aboutsummaryrefslogtreecommitdiff
path: root/tests/test_nn_tensorflow_config.py
diff options
context:
space:
mode:
authorBenjamin Klimczak <benjamin.klimczak@arm.com>2022-07-11 12:33:42 +0100
committerBenjamin Klimczak <benjamin.klimczak@arm.com>2022-07-26 14:08:21 +0100
commit5d81f37de09efe10f90512e50252be9c36925fcf (patch)
treeb4d7cdfd051da0a6e882bdfcf280fd7ca7b39e57 /tests/test_nn_tensorflow_config.py
parent7899b908c1fe6d86b92a80f3827ddd0ac05b674b (diff)
downloadmlia-5d81f37de09efe10f90512e50252be9c36925fcf.tar.gz
MLIA-551 Rework remains of AIET architecture
Re-factoring the code base to further merge the old AIET code into MLIA. - Remove last traces of the backend type 'tool' - Controlled systems removed, including SSH protocol, controller, RunningCommand, locks etc. - Build command / build dir and deploy functionality removed from Applications and Systems - Moving working_dir() - Replace module 'output_parser' with new module 'output_consumer' and merge Base64 parsing into it - Change the output consumption to optionally remove (i.e. actually consume) lines - Use Base64 parsing in GenericInferenceOutputParser, replacing the regex-based parsing and remove the now unused regex parsing - Remove AIET reporting - Pre-install applications by moving them to src/mlia/resources/backends - Rename aiet-config.json to backend-config.json - Move tests from tests/mlia/ to tests/ - Adapt unit tests to code changes - Dependencies removed: paramiko, filelock, psutil - Fix bug in corstone.py: The wrong resource directory was used which broke the functionality to download backends. - Use f-string formatting. - Use logging instead of print. Change-Id: I768bc3bb6b2eda57d219ad01be4a8e0a74167d76
Diffstat (limited to 'tests/test_nn_tensorflow_config.py')
-rw-r--r--tests/test_nn_tensorflow_config.py72
1 files changed, 72 insertions, 0 deletions
diff --git a/tests/test_nn_tensorflow_config.py b/tests/test_nn_tensorflow_config.py
new file mode 100644
index 0000000..1ac9f97
--- /dev/null
+++ b/tests/test_nn_tensorflow_config.py
@@ -0,0 +1,72 @@
+# SPDX-FileCopyrightText: Copyright 2022, Arm Limited and/or its affiliates.
+# SPDX-License-Identifier: Apache-2.0
+"""Tests for config module."""
+from contextlib import ExitStack as does_not_raise
+from pathlib import Path
+from typing import Any
+
+import pytest
+
+from mlia.nn.tensorflow.config import get_model
+from mlia.nn.tensorflow.config import KerasModel
+from mlia.nn.tensorflow.config import TFLiteModel
+from mlia.nn.tensorflow.config import TfModel
+
+
+def test_convert_keras_to_tflite(tmp_path: Path, test_keras_model: Path) -> None:
+ """Test Keras to TFLite conversion."""
+ keras_model = KerasModel(test_keras_model)
+
+ tflite_model_path = tmp_path / "test.tflite"
+ keras_model.convert_to_tflite(tflite_model_path)
+
+ assert tflite_model_path.is_file()
+ assert tflite_model_path.stat().st_size > 0
+
+
+def test_convert_tf_to_tflite(tmp_path: Path, test_tf_model: Path) -> None:
+ """Test TensorFlow saved model to TFLite conversion."""
+ tf_model = TfModel(test_tf_model)
+
+ tflite_model_path = tmp_path / "test.tflite"
+ tf_model.convert_to_tflite(tflite_model_path)
+
+ assert tflite_model_path.is_file()
+ assert tflite_model_path.stat().st_size > 0
+
+
+@pytest.mark.parametrize(
+ "model_path, expected_type, expected_error",
+ [
+ ("test.tflite", TFLiteModel, does_not_raise()),
+ ("test.h5", KerasModel, does_not_raise()),
+ ("test.hdf5", KerasModel, does_not_raise()),
+ (
+ "test.model",
+ None,
+ pytest.raises(
+ Exception,
+ match="The input model format is not supported"
+ r"\(supported formats: TFLite, Keras, TensorFlow saved model\)!",
+ ),
+ ),
+ ],
+)
+def test_get_model_file(
+ model_path: str, expected_type: type, expected_error: Any
+) -> None:
+ """Test TFLite model type."""
+ with expected_error:
+ model = get_model(model_path)
+ assert isinstance(model, expected_type)
+
+
+@pytest.mark.parametrize(
+ "model_path, expected_type", [("tf_model_test_model", TfModel)]
+)
+def test_get_model_dir(
+ test_models_path: Path, model_path: str, expected_type: type
+) -> None:
+ """Test TFLite model type."""
+ model = get_model(str(test_models_path / model_path))
+ assert isinstance(model, expected_type)