aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/supported_operators.py
blob: f4dd5796f6b587c8a5959c22d34a2c45eed16fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# The SupportedOperators class which is a collection of all supported operators and parameter checks.
from collections import defaultdict

import numpy as np

from .data_type import BaseType
from .data_type import DataType
from .numeric_util import is_integer
from .operation import get_slice_offsets
from .operation import Op


# Custom decorator function to allow formatting docstrings containing "{}"
def docstring_format_args(args):
    def docstring(func):
        func.__doc__ = func.__doc__.format(*args)
        return func

    return docstring


def warn_cpu(op, msg):
    print("Warning: {} {}, placing on CPU".format(op.type, msg))


class SupportedOperators:
    # Categorised lists of supported operators
    npu_pre_ops = set((Op.SplitSliceRead,))
    convolution_ops = set((Op.Conv2DBias, Op.Conv2D, Op.QuantizedConv2D,))
    depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
    transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
    convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
    max_pooling_ops = Op.op_set(Op.is_maxpool_op)
    avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
    pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
    resizing_ops = set((Op.ResizeBilinear,))
    fc_vector_products = set((Op.QuantizedMatMul, Op.MatMul, Op.FullyConnected,))
    mac_main_ops = (
        # RNN/LSTM/GRU
        set((Op.BlockLSTM,))
        # conv/depthwiseconv/transposeconv
        | convolution_like_ops
        # pooling
        | pooling_ops
        # resizing/upscaling
        | resizing_ops
        # FC layers
        | fc_vector_products
    )
    unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
    binary_elem_wise_min_max_ops = set((Op.Minimum, Op.Maximum,))
    binary_elem_wise_shift_ops = set((Op.SHL, Op.SHR,))
    binary_elem_wise_add_mul_sub = set((Op.Add, Op.Mul, Op.Sub,))
    binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
    elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops
    supported_int32_tensor_ops = (
        set((Op.ReduceSum, Op.CLZ,)) | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
    )
    activation_ops = set((Op.Relu, Op.Relu6, Op.ReluN1To1, Op.Sigmoid, Op.Tanh, Op.Softmax,))
    npu_post_ops = (
        # activation functions
        activation_ops
        # concatenation write direction
        | set((Op.ConcatSliceWrite,))
        # Quantization
        | set((Op.Quantize,))
    )
    split_ops = set((Op.Split, Op.SplitV, Op.StridedSlice, Op.Slice, Op.UnpackReshaped, Op.Unpack,))
    concat_ops = set((Op.Concat, Op.ConcatTFLite, Op.PackReshaped, Op.Pack,))
    memory_only_ops = set((Op.Squeeze, Op.Reshape, Op.QuantizedReshape, Op.ExpandDims,)) | concat_ops | split_ops
    shapeless_input_ops = binary_elem_wise_main_ops | set((Op.Split, Op.SplitV,))
    supported_fused_activations = set((Op.Relu, Op.Relu6, Op.ReluN1To1, Op.Tanh, Op.Sigmoid, Op.LUT,))
    supported_operators = npu_pre_ops | mac_main_ops | elem_wise_main_ops | npu_post_ops | memory_only_ops
    # Supported data types
    supported_op_dtypes = set((DataType.uint8, DataType.int8, DataType.int16, DataType.int32))
    supported_bias_dtypes = set((DataType.int32, DataType.int64))
    # Defined ranges for allowed values:
    tens_dim_range = (1, 65535)
    stride_range = (1, 3)
    dilation_range = (1, 2)
    dilated_height_range = (1, 64)
    dilated_product_range = (1, 64 * 64)
    weights_limit = 127 * 65536

    def __init__(self):
        # Setup supported operator restriction checkers
        self.supported_operator_restrictions = {}
        self.supported_operator_restrictions.update(
            {op: self.check_depthwise_convolution_restrictions for op in SupportedOperators.depthwise_convolution_ops}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_transpose_convolution_restrictions for op in SupportedOperators.transpose_convolution_ops}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_pooling_restrictions for op in SupportedOperators.pooling_ops}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_resize_restrictions for op in SupportedOperators.resizing_ops}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_vector_product_restrictions for op in SupportedOperators.fc_vector_products}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_element_wise_restrictions for op in SupportedOperators.elem_wise_main_ops}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_memory_only_restrictions for op in SupportedOperators.memory_only_ops}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_activation_ops for op in SupportedOperators.activation_ops}
        )
        # Setup the generic constraints. Note: the order matters
        self.generic_constraints = []
        self.generic_constraints.append(SupportedOperators.constraint_tens_defined_shape)
        self.generic_constraints.append(SupportedOperators.constraint_tens_output_shapeless)
        self.generic_constraints.append(SupportedOperators.constraint_tens_input_shapeless)
        self.generic_constraints.append(SupportedOperators.constraint_tens_shape_size)
        self.generic_constraints.append(SupportedOperators.constraint_tens_dtype)
        self.generic_constraints.append(SupportedOperators.constraint_tens_int32_ops)
        self.generic_constraints.append(SupportedOperators.constraint_tens_dimension)
        self.generic_constraints.append(SupportedOperators.constraint_tens_quant_none_check)
        self.generic_constraints.append(SupportedOperators.constraint_tens_quant_scale)
        self.generic_constraints.append(SupportedOperators.constraint_faf)
        # Setup specific constraints. The key in the dictionary must be a tuple of op types the constraints apply to
        self.specific_constraints = defaultdict(list)
        # Conv-like ops have the same checks applied to them:
        conv_like_ops = tuple(SupportedOperators.convolution_like_ops)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_stride_type)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_stride_range)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_dilation_type)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_dilation_range)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_dilated_height_range)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_dilated_product_range)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_weights_type)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_weights_nonconst)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_weights_limit)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_bias_type)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_bias_40bit)
        self.specific_constraints[conv_like_ops].append(SupportedOperators.constraint_batch_size)

    def get_constraints_list(self, op_type):
        constraint_list = list(self.generic_constraints)
        for ops in self.specific_constraints:
            if op_type in ops:
                constraint_list.extend(self.specific_constraints[ops])
        return constraint_list

    def is_operator_supported(self, op):
        if op.type not in SupportedOperators.supported_operators:
            if op.type not in (Op.Placeholder, Op.SubgraphInput, Op.Const):
                print("Info: {} '{}' is not supported on the NPU. Placing on CPU instead".format(op.type, op.name))
            return False

        for constraint in self.get_constraints_list(op.type):
            valid, extra = constraint(op)
            if not valid:
                print("Warning: {} '{}' is not supported on the NPU. Placing on CPU instead".format(op.type, op.name))
                print(" - {}".format(constraint.__doc__))
                if extra:
                    print("   {}".format(extra))
                return False

        if op.type in self.supported_operator_restrictions:
            return self.supported_operator_restrictions[op.type](op)
        return True

    @staticmethod
    def constraint_tens_defined_shape(op):
        "Input(s) and Output Tensors must have a defined shape"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs + op.outputs if tens]
        for tens in tensors:
            if not tens.has_fully_defined_shape():
                valid = False
                extra.append("Tensor '{}' has shape: {}".format(tens.name, tens.shape))
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_tens_output_shapeless(op):
        "Scalar or Broadcasting Tensors are only valid for Input Tensors"
        valid = True
        extra = []
        for tens in op.outputs:
            if tens.shape == []:
                valid = False
                extra.append("Output Tensor '{}' is shapeless".format(tens.name))
        return valid, ", ".join(extra)

    @classmethod
    @docstring_format_args([shapeless_input_ops])
    def constraint_tens_input_shapeless(cls, op):
        "Scalar or Broadcasting Input Tensors are only valid for op type: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if (tens.shape == []) and (op.type not in cls.shapeless_input_ops):
                valid = False
                extra.append(tens.name)
        extra = "Op has shapeless input tensor(s): {}".format(", ".join(extra))
        return valid, extra

    @staticmethod
    def constraint_tens_shape_size(op):
        "Input(s) and Output Tensors must not be greater than 4D"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs + op.outputs if tens]
        for tens in tensors:
            if len(tens.shape) > 4:
                valid = False
                extra.append("Tensor '{}' has shape: {}".format(tens.name, tens.shape))
        return valid, ", ".join(extra)

    @classmethod
    @docstring_format_args([supported_op_dtypes])
    def constraint_tens_dtype(cls, op):
        "Input(s), Output and Weight Tensors must be of type: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        tensors = tensors if tensors else op.inputs
        for tens in tensors:
            if tens.dtype not in cls.supported_op_dtypes:
                valid = False
                extra.append("Tensor '{}' has data type: {}".format(tens.name, tens.dtype))
        return valid, ", ".join(extra)

    @classmethod
    @docstring_format_args([supported_int32_tensor_ops])
    def constraint_tens_int32_ops(cls, op):
        "Tensors which are int32 are only valid when op type is: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        tensors = tensors if tensors else op.inputs
        for tens in tensors:
            if (tens.dtype == DataType.int32) and (op.type not in cls.supported_int32_tensor_ops):
                valid = False
                extra.append(tens.name)
        extra = "Op has int32 tensor(s): {}".format(", ".join(extra))
        return valid, extra

    @classmethod
    @docstring_format_args(tens_dim_range)
    def constraint_tens_dimension(cls, op):
        "Tensor dimensions must be in the range [{}, {}]"
        tens_min, tens_max = cls.tens_dim_range
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        tensors = tensors if tensors else op.inputs
        for tens in tensors:
            if not all(tens_min <= dim <= tens_max for dim in tens.shape):
                valid = False
                extra.append("Tensor '{}' has shape: {}".format(tens.name, tens.shape))
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_tens_quant_none_check(op):
        "Tensors must have quantization parameters"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        for tens in tensors:
            if tens.quantization is None:
                valid = False
                extra.append("Tensor '{}' has no quantization parameters".format(tens.name))
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_tens_quant_scale(op):
        "Tensors with quantization scales must be finite"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        for tens in tensors:
            if (tens.quantization.scale_f32 is not None) and np.isinf(tens.quantization.scale_f32).any():
                valid = False
                extra.append("Tensor '{}' has quantization scale: {}".format(tens.name, tens.quantization.scale_f32))
        return valid, ", ".join(extra)

    @classmethod
    @docstring_format_args([supported_fused_activations])
    def constraint_faf(cls, op):
        "The fused activation function (if present) must be one of type: {}"
        faf = op.activation
        valid = (faf is None) or (faf in cls.supported_fused_activations)
        extra = "Op has its fused activation function as: {}".format(faf)
        return valid, extra

    @staticmethod
    def constraint_stride_type(op):
        "Stride values for both width and height must be integer types"
        w = op.attrs["stride_w"]
        h = op.attrs["stride_h"]
        valid = is_integer(w) and is_integer(h)
        extra = "Op has stride WxH as: {}x{}".format(repr(w), repr(h))
        return valid, extra

    @classmethod
    @docstring_format_args(stride_range)
    def constraint_stride_range(cls, op):
        "Stride values for both width and height must be in the range [{}, {}]"
        w = op.attrs["stride_w"]
        h = op.attrs["stride_h"]
        stride_min, stride_max = cls.stride_range
        valid = (stride_min <= w <= stride_max) and (stride_min <= h <= stride_max)
        extra = "Op has stride WxH as: {}x{}".format(w, h)
        return valid, extra

    @staticmethod
    def constraint_dilation_type(op):
        "Dilation factor values for both width and height must be integer types"
        w = op.attrs.get("dilation_w_factor", 1)
        h = op.attrs.get("dilation_h_factor", 1)
        valid = is_integer(w) and is_integer(h)
        extra = "Op has dilation factor WxH as: {}x{}".format(repr(w), repr(h))
        return valid, extra

    @classmethod
    @docstring_format_args(dilation_range)
    def constraint_dilation_range(cls, op):
        "Dilation factor values for both width and height must be in the range [{}, {}]"
        w = op.attrs.get("dilation_w_factor", 1)
        h = op.attrs.get("dilation_h_factor", 1)
        dilation_min, dilation_max = cls.dilation_range
        valid = (dilation_min <= w <= dilation_max) and (dilation_min <= h <= dilation_max)
        extra = "Op has dilation factor WxH as: {}x{}".format(w, h)
        return valid, extra

    @classmethod
    @docstring_format_args(dilated_height_range)
    def constraint_dilated_height_range(cls, op):
        "Dilated kernel height must be in the range [{}, {}]"
        h = (op.weights.shape[0] - 1) * op.attrs.get("dilation_h_factor", 1) + 1
        dilated_height_min, dilated_height_max = cls.dilated_height_range
        valid = dilated_height_min <= h <= dilated_height_max
        extra = "Op has dilated kernel height as: {}".format(h)
        return valid, extra

    @classmethod
    @docstring_format_args(dilated_product_range)
    def constraint_dilated_product_range(cls, op):
        "Product of dilated kernel width and height must be in the range [{}, {}]"
        weights = op.weights
        w = (weights.shape[1] - 1) * op.attrs.get("dilation_w_factor", 1) + 1
        h = (weights.shape[0] - 1) * op.attrs.get("dilation_h_factor", 1) + 1
        product = w * h
        dilated_product_min, dilated_product_max = cls.dilated_product_range
        valid = dilated_product_min <= product <= dilated_product_max
        extra = "Op has product of dilated kernel width and height as: {}".format(product)
        return valid, extra

    @staticmethod
    def constraint_weights_type(op):
        "Weight Tensor must be 8-bit"
        weights = op.weights
        valid = weights.element_size() == 1
        extra = "Tensor '{}' is {}-bit".format(weights.name, int(weights.element_size() * 8))
        return valid, extra

    @staticmethod
    def constraint_weights_nonconst(op):
        "Weight tensor cannot be non-constant"
        weights = op.weights
        valid = weights.values is not None
        extra = "Tensor '{}' has non-constant values".format(weights.name)
        return valid, extra

    @classmethod
    @docstring_format_args([weights_limit])
    def constraint_weights_limit(cls, op):
        "The sum of the weights cannot exceed {}"
        weights = op.weights
        values = weights.quant_values.astype(np.int64) - weights.quantization.zero_point
        limit = np.amax(np.sum(np.absolute(values), axis=(0, 1, 2)))
        valid = limit <= cls.weights_limit
        extra = "Tensor '{}' has the sum of weights: {}".format(weights.name, limit)
        return valid, extra

    @classmethod
    @docstring_format_args([supported_bias_dtypes])
    def constraint_bias_type(cls, op):
        "Optional Bias Tensor must be of type: {}"
        valid = True
        extra = ""
        bias = op.bias
        if bias:
            valid = bias.dtype in cls.supported_bias_dtypes
            extra = "Tensor '{}' has data type: {}".format(bias.name, bias.dtype)
        return valid, extra

    @staticmethod
    def constraint_bias_40bit(op):
        "Optional Bias Tensor values must fit within 40-bits"
        valid = True
        extra = ""
        bias = op.bias
        if bias and bias.dtype == DataType.int64:
            valid = all(len(bin(quant_value)[2:]) <= 40 for quant_value in bias.quant_values)
            extra = "Tensor '{}' has values larger than 40-bits".format(bias.name)
        return valid, extra

    @staticmethod
    def constraint_batch_size(op):
        "IFM Tensor batch size must be 1"
        ifm = op.ifm
        valid = ifm.shape[0] == 1
        extra = "Tensor '{}' has batch size: {}".format(ifm.name, ifm.shape[0])
        return valid, extra

    @classmethod
    def check_depthwise_convolution_restrictions(cls, op):
        # check depth
        ifm_tensor, ofm_tensor = op.get_ifm_ofm()
        if op.attrs["depth_multiplier"] > 1 and not (
            (ifm_tensor.shape[3] == 1) and (ofm_tensor.shape[3] == op.attrs["depth_multiplier"])
        ):
            print(
                "Warning: for depth multipliers > 1,",
                "number of input channels must be 1 and number of output channels must be equal to depth multiplier.",
                "Placing on CPU",
            )
            return False
        return True

    @classmethod
    def check_transpose_convolution_restrictions(cls, op):
        # check stride
        stride_h, stride_w = op.attrs["stride_h"], op.attrs["stride_w"]
        if stride_h != 2 or stride_w != 2:
            print("Warning: stride must be equal to 2, placing on CPU")
            return False

        # check output dimensions
        ifm_tensor, weight_tensor, _, ofm_tensor = op.get_ifm_weights_biases_ofm()
        ifm_h, ifm_w = ifm_tensor.shape[1], ifm_tensor.shape[2]
        ofm_h, ofm_w = ofm_tensor.shape[1], ofm_tensor.shape[2]
        if op.attrs["padding"] == b"SAME":
            if (ofm_h != ifm_h * stride_h) or (ofm_w != ifm_w * stride_w):
                print(
                    "Warning: for",
                    op.type,
                    "using SAME padding, output dimensions must equal input dimensions multiplied by stride.",
                    "Placing on CPU",
                )
                return False
        elif op.attrs["padding"] == b"VALID":
            kernel_h, kernel_w = weight_tensor.shape[0], weight_tensor.shape[1]
            if (ofm_h != (ifm_h) * stride_h + max(kernel_h - stride_h, 0)) or (
                ofm_w != (ifm_w) * stride_w + max(kernel_w - stride_w, 0)
            ):
                print(
                    "Warning: for",
                    op.type,
                    "using VALID padding, output dimensions must equal input dimensions multiplied by stride,",
                    "minus difference between kernel size and stride. Placing on CPU",
                )
                return False
        return True

    @classmethod
    def check_pooling_restrictions(cls, op):
        # check stride
        stride_w, stride_h = op.attrs["stride_w"], op.attrs["stride_h"]
        if not is_integer(stride_w) or not is_integer(stride_h):
            print("Warning:", op.type, "has non-integer stride, placing on CPU")
            return False
        if not 1 <= stride_w <= 3 or not 1 <= stride_h <= 3:
            print(
                "Warning: {} has stride ({}, {}), only strides in range [1, 3] are allowed. Placing on CPU".format(
                    op.type, stride_w, stride_h
                )
            )
            return False

        # check data type
        ifm_tensor, ofm_tensor = op.get_ifm_ofm()
        if ifm_tensor.dtype != ofm_tensor.dtype:
            if op.type != Op.ReduceSum:
                print("Warning: input data type doesn't match output data type, placing on CPU")
                return False
            # TODO: else check ReduceSum restrictions.

        # check batch size
        if ifm_tensor.shape[0] != 1:
            print("Warning: input batch size must be 1, placing on CPU")
            return False

        # check kernel size
        kernel_w, kernel_h = op.attrs["filter_width"], op.attrs["filter_height"]
        if op.type in cls.avg_pooling_ops and op.attrs["padding"] == b"SAME":
            if not 1 <= kernel_w <= 8 or not 1 <= kernel_h <= 8:
                print(
                    "Warning:",
                    op.type,
                    "has kernel size ({}, {}), only kernel sizes in range [1, 8] are allowed. Placing on CPU".format(
                        kernel_w, kernel_h
                    ),
                )
                return False
        if op.type in cls.avg_pooling_ops and op.attrs["padding"] == b"VALID" or op.type in cls.max_pooling_ops:
            if not 1 <= kernel_w * kernel_h <= 256 * 256:
                print(
                    "Warning: product of kernel width and height must be >= 1 and not exceed 256 * 256 ({}),".format(
                        256 * 256
                    ),
                    "placing on CPU",
                )
                return False
            if not 1 <= kernel_h <= 256:
                print("Warning:", op.type, "has kernel height outside of range [1, 256], placing on CPU")
                return False

        return True

    @classmethod
    def check_resize_restrictions(cls, op):
        # check unsupported upscaling factor
        if op.type == Op.ResizeBilinear:
            if op.inputs[0].shape[1] == 1 and op.inputs[0].shape[2] == 1:
                return True
            if op.inputs[0].shape == op.outputs[0].shape:
                return True
            upscaled_shape = np.array(op.inputs[0].shape[1:3])
            out_shape = np.array(op.outputs[0].shape[1:3])
            while (upscaled_shape < out_shape).all():
                upscaled_shape *= 2
                if op.attrs["align_corners"]:
                    upscaled_shape -= 1
                if np.array_equal(out_shape, upscaled_shape):
                    return True
        return False

    @classmethod
    def check_vector_product_restrictions(cls, op):
        # check data type
        ifm_tensor, _, weight_tensor, bias_tensor, _ = op.get_ifm_ifm2_weights_biases_ofm()
        if weight_tensor.element_size() > 1:
            print("Warning: only 8-bit datatypes supported for {}, placing on CPU".format(op.type))
            return False

        if not cls.check_bias_restrictions(bias_tensor):
            return False

        # check non const weights
        if weight_tensor.values is None:
            print("Warning:", op.type, "has non-const weights, placing on CPU")
            return False

        return True

    @classmethod
    def check_element_wise_restrictions(cls, op):
        # check data type
        ifm_tensor, ifm2_tensor, _, ofm_tensor = op.get_ifm_ifm2_weights_ofm()
        # input and output datatype must match for these operators
        if (
            op.type in cls.binary_elem_wise_min_max_ops | cls.unary_elem_wise_main_ops
            and ifm_tensor.dtype != ofm_tensor.dtype
        ):
            print("Warning:", op.type, "must have same input and output datatype, placing on CPU")
            return False
        if op.type in cls.binary_elem_wise_add_mul_sub:
            # both inputs must have same type
            if ifm_tensor.dtype != ifm2_tensor.dtype:
                print("Warning:", op.type, "must have same datatype on both inputs, placing on CPU")
                return False
            # signed input check
            if ifm_tensor.dtype.type & BaseType.Signed:
                # output must be signed
                if ofm_tensor.dtype.type & BaseType.Unsigned:
                    print("Warning: only signed output types supported for {}, placing on CPU".format(op.type))
                    return False
                # and 8, 16 or 32-bit
                bit_lengths = {8, 16, 32}
                if ofm_tensor.element_size() * 8 not in bit_lengths:
                    print(
                        "Warning:", op.type, "is only supported for bit lengths {}, placing on CPU".format(bit_lengths)
                    )
                    return False
            # unsigned input check, output must be same type or int32
            if ifm_tensor.dtype.type & BaseType.Unsigned and not (
                ifm_tensor.dtype == ofm_tensor.dtype or ofm_tensor.dtype == DataType.int32
            ):
                print("Warning:", op.type, "has unsigned input but output is not unsigned or int32, placing on CPU")
                return False
        elif op.type in cls.binary_elem_wise_shift_ops:
            if ifm_tensor.dtype != DataType.int32 or ifm2_tensor.dtype != DataType.int32:
                print("Warning:", op.type, "input datatypes are not int32, placing on CPU")
                return False
            if op.type in (Op.CLZ, Op.SHL) and ofm_tensor.dtype != DataType.int32:
                print("Warning:", op.type, "output datatype is not int32, placing on CPU")
                return False

        # check batch size
        if len(ifm_tensor.shape) > 2 and ifm_tensor.shape[0] != 1:
            print(
                "Warning:",
                op.type,
                "only supports batch size 1 for tensors with more than 2 dimensions, placing on CPU",
            )
            return False
        if op.type in cls.binary_elem_wise_main_ops:  # if op type is unary, ifm2_tensor is None
            if len(ifm2_tensor.shape) > 2 and ifm2_tensor.shape[0] != 1:
                print(
                    "Warning:",
                    op.type,
                    "only supports batch size 1 for tensors with more than 2 dimensions, placing on CPU",
                )
                return False

        # negative alpha values are not supported
        if op.type == Op.LeakyRelu and op.attrs["alpha"] < 0:
            print("Warning:", op.type, "has negative alpha, placing on CPU")
            return False

        # check if ifm or ifm2 has ofm shape
        if ifm_tensor.shape != ofm_tensor.shape and ifm2_tensor.shape != ofm_tensor.shape:
            print("Warning:", op.type, "input shape(s) differ from output shape, placing on CPU")
            return False

        if op.type in cls.binary_elem_wise_min_max_ops and not cls.check_quantization_restrictions_binary_elem_wise(op):
            return False

        return True

    @classmethod
    def check_memory_only_restrictions(cls, op):
        if op.type == Op.StridedSlice:
            if len(op.inputs) != 4:
                warn_cpu(op, "has {} input tensors, only 4 inputs are supported".format(len(op.inputs)))
                return False
            input_tens, begin_tens, end_tens, strides_tens = op.inputs
            if begin_tens.values is None or end_tens.values is None or strides_tens.values is None:
                warn_cpu(op, "has a non-constant begin, end, or stride input tensor, which is not supported")
                return False
            if not (
                len(input_tens.shape)
                == len(op.outputs[0].shape)
                == len(begin_tens.values)
                == len(end_tens.values)
                == len(strides_tens.values)
            ):
                warn_cpu(op, "has input tensors with shapes that are not supported")
                return False
            # check stride size
            if any(stride != 1 for stride in strides_tens.values):
                warn_cpu(op, "has stride values {}, only stride 1 values are supported".format(strides_tens.values))
                return False
            # check ellipsis_mask
            if op.attrs["ellipsis_mask"] != 0:
                warn_cpu(op, "ellipsis_mask is {}, only 0 is supported".format(op.attrs["ellipsis_mask"]))
                return False
            # check if both new_axis_mask and shrink_axis_mask have bit set
            if op.attrs["new_axis_mask"] != 0 and op.attrs["shrink_axis_mask"] != 0:
                warn_cpu(op, "new_axis_mask and shrink_axis_mask are both non-zero, which is not supported")
                return False
            # Calculate offset start/end
            offset_start = get_slice_offsets(input_tens.shape, begin_tens, op.attrs["begin_mask"], is_begin=True)
            offset_end = get_slice_offsets(input_tens.shape, end_tens, op.attrs["end_mask"], is_begin=False)
            # check "end - begin" doesn't result in any zero or negative elements
            if any((end - begin) <= 0 for begin, end in zip(offset_start, offset_end)):
                warn_cpu(
                    op,
                    "has slice begin values {}, some of which are >= end values {}, which is illegal".format(
                        begin_tens.values, end_tens.values
                    ),
                )
                return False
        if op.type == Op.SplitV:
            # check that maximum one size is set to -1, indicating that size should be inferred
            sizes = op.inputs[1].values
            num_to_be_inferred = 0
            for size in sizes:
                if size == -1:
                    num_to_be_inferred += 1

            if num_to_be_inferred > 1:
                print("Warning:", op.type, "has more than one size to be inferred, which is illegal, placing on CPU")
                return False
        if op.type in set((Op.Concat, Op.ConcatTFLite,)):
            axis = op.attrs.get("axis", None)
            if axis is None:
                print("Warning:", op.type, "invalid or missing axis, placing on CPU")
                return False
            if axis < 0:
                axis += len(op.inputs[0].shape)
            if not 0 <= axis < len(op.inputs[0].shape):
                print("Warning:", op.type, "invalid axis", axis, ", placing on CPU")
                return False
            ofm = op.outputs[0]
            ofm_dims = len(ofm.shape)
            for ifm in op.inputs:
                if len(ifm.shape) != ofm_dims:
                    return False
                for i in range(ofm_dims):
                    if i != axis and ifm.shape[i] != ofm.shape[i]:
                        print(
                            "Warning:",
                            op.type,
                            "invalid ifm:",
                            ifm.name,
                            ifm.shape,
                            "mismatch in dimension",
                            i,
                            ", placing on CPU",
                        )
                        return False

        return True

    @classmethod
    def check_quantization_restrictions_binary_elem_wise(cls, op):
        # makes sure IFM1, IFM2 and OFM quantization are equal for binary ops
        assert len(op.inputs) >= 2 and len(op.outputs) == 1

        if (
            op.inputs[0].quantization is None
            or not op.inputs[0].is_scaling_equal(op.inputs[1])
            or not op.inputs[0].is_scaling_equal(op.outputs[0])
        ):
            print(
                "Warning: Input/output tensors with different quantization is unsupported for the", op.type, "operator"
            )
            return False

        return True

    @classmethod
    def check_activation_ops(cls, op):
        if op.type == Op.Softmax:
            ifm_tensor = op.inputs[0]
            ofm_tensor = op.outputs[0]

            # check data type
            if ifm_tensor.dtype != ofm_tensor.dtype:
                print("Warning:", op.type, "input type differs from output type, placing on CPU")
                return False

            if ifm_tensor.dtype not in (DataType.uint8, DataType.int8, DataType.int16):
                print(
                    "Warning: only datatypes supported for {} are uint8, int8 and int16; placing on CPU".format(op.type)
                )
                return False

            # check shape
            if ifm_tensor.shape != ofm_tensor.shape:
                print("Warning:", op.type, "input shape differs from output shape, placing on CPU")
                return False

        return True

    @classmethod
    def check_bias_restrictions(cls, bias_tensor):
        # check data type
        if bias_tensor is not None and bias_tensor.dtype not in (DataType.int32, DataType.int64):
            print("Warning: bias tensor datatype must be int32 or int64, placing on CPU")
            return False

        # check if values fits in 40-bit
        if bias_tensor is not None and bias_tensor.dtype == DataType.int64:
            for quant_value in bias_tensor.quant_values:
                if not (-(1 << 39) <= quant_value < (1 << 39)):
                    print("Warning: bias tensor values are larger than 40 bits, placing on CPU")
                    return False

        return True