aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/supported_operators.py
blob: 729d435a72e6d55e04071e672b771718cca374c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# The SupportedOperators class which is a collection of all supported operators and parameter checks.
from .data_type import BaseType, DataType


class SupportedOperators:
    def __init__(self):
        # Categorised lists of supported operators
        self.npu_pre_ops = set(("QuantizedResizeBilinear", "SplitSliceRead"))
        self.convolution_ops = set(("Conv2DBiasAct", "Conv2D", "QuantizedConv2D", "Conv2DBackpropInputSwitched"))
        self.depthwise_convolution_ops = set(
            ("DepthwiseConv2dBiasAct", "DepthwiseConv2dNative", "QuantizedDepthwiseConv2D")
        )
        self.max_pooling_ops = set(("QuantizedMaxPool", "MaxPool", "MaxPoolAct"))
        self.avg_pooling_ops = set(("QuantizedAvgPool", "AvgPool", "AvgPoolAct"))
        self.pooling_ops = self.max_pooling_ops | self.avg_pooling_ops
        self.resizing_ops = set(("ResizeBilinear",))
        self.fc_vector_products = set(("QuantizedMatMul", "MatMul", "FullyConnectedAct"))
        self.mac_main_ops = (
            # convolutions
            self.convolution_ops
            # depth-wise convolutions
            | self.depthwise_convolution_ops
            # pooling
            | self.pooling_ops
            # resizing/upscaling
            | self.resizing_ops
            # FC layers
            | self.fc_vector_products
            # RNN/LSTM/GRU
            | set(("BlockLSTM"))
        )
        self.unary_elem_wise_main_ops = set(("LeakyRelu", "Abs"))
        self.binary_elem_wise_min_max_ops = set(("Minimum", "Maximum"))
        self.binary_elem_wise_add_mul_sub = set(
            (
                "AddAct",
                "MulAct",
                "SubAct",
                "QuantizedAdd",
                "QuantizedSub",
                "QuantizedMul",
                "Mul",
                "Add",
                "Sub",
            )
        )
        self.binary_elem_wise_main_ops = self.binary_elem_wise_min_max_ops | self.binary_elem_wise_add_mul_sub
        self.elem_wise_main_ops = self.binary_elem_wise_main_ops | self.unary_elem_wise_main_ops
        self.activation_ops = set(
            ("QuantizedRelu", "QuantizedRelu1", "QuantizedRelu6", "Relu", "Relu6", "ReluN1To1", "Sigmoid", "Tanh")
        )
        self.npu_post_ops = (
            # activation functions
            self.activation_ops
            # concatenation write direction
            | set(("ConcatSliceWrite"))
            # bias add and batch norm
            | set(("QuantizedBiasAdd", "Requantize", "QuantizedBatchNorm", "BiasAdd", "FusedBatchNorm"))
        )
        self.split_ops = set(("Split", "SplitV", "StridedSlice", "Slice", "UnpackReshaped", "Unpack"))
        self.concat_ops = set(("Concat", "ConcatV2", "QuantizedConcat", "ConcatTFLite", "PackReshaped", "Pack"))
        self.memory_only_ops = (
            set(("Squeeze", "Reshape", "QuantizedReshape", "ExpandDims")) | self.concat_ops | self.split_ops
        )
        self.supported_fused_activations = set(("Relu", "Relu6", "ReluN1To1", "Tanh", "Sigmoid"))
        self.supported_operators = (
            self.npu_pre_ops | self.mac_main_ops | self.elem_wise_main_ops | self.npu_post_ops | self.memory_only_ops
        )
        # Setup supported operator restriction checkers
        self.supported_operator_restrictions = {}
        self.supported_operator_restrictions.update(
            {op: self.check_convolution_restrictions for op in self.convolution_ops}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_depthwise_convolution_restrictions for op in self.depthwise_convolution_ops}
        )
        self.supported_operator_restrictions.update({op: self.check_pooling_restrictions for op in self.pooling_ops})
        self.supported_operator_restrictions.update({op: self.check_resize_restrictions for op in self.resizing_ops})
        self.supported_operator_restrictions.update(
            {op: self.check_vector_product_restrictions for op in self.fc_vector_products}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_element_wise_restrictions for op in self.elem_wise_main_ops}
        )
        self.supported_operator_restrictions.update(
            {op: self.check_memory_only_restrictions for op in self.memory_only_ops}
        )

    def is_operator_supported(self, op):
        if op.type not in self.supported_operators:
            return False
        if not self.check_generic_restrictions(op):
            return False
        if op.type in self.supported_operator_restrictions:
            return self.supported_operator_restrictions[op.type](op)
        return True

    def check_generic_restrictions(self, op):
        # check fully defined shapes
        for t in op.inputs + op.outputs:
            if not t.has_fully_defined_shape():
                print("Warning:", op, "has inputs/outputs of undefined shape, placing on CPU")
                return False

        # check data type
        tensors = [t for t in op.get_ifm_ifm2_weights_ofm() if t is not None]
        if not tensors:
            tensors = op.inputs
        for t in tensors:
            if not (t.dtype.type & BaseType.Int):
                return False
            if t.element_size() > 2 and op.type not in ("Requantize") | self.binary_elem_wise_add_mul_sub:
                return False
            # check size
            if any(dim > 65536 for dim in t.shape):
                return False

        # check fused activations
        if (
            "fused_activation_function" in op.attrs
            and op.attrs["fused_activation_function"] is not None
            and op.attrs["fused_activation_function"] not in self.supported_fused_activations
        ):
            return False
        return True

    def check_convolution_restrictions(self, op):
        # check stride
        if op.attrs["stride_w"] > 3 or op.attrs["stride_h"] > 3:
            return False

        # check dilation
        dilation_w_factor = op.attrs.get("dilation_w_factor", 1)
        dilation_h_factor = op.attrs.get("dilation_h_factor", 1)
        if dilation_w_factor > 2 or dilation_h_factor > 2:
            return False

        # check data type
        ifm_tensor, _, weight_tensor, _ = op.get_ifm_ifm2_weights_ofm()
        if weight_tensor.element_size() > 1:
            return False

        # check kernel size
        dilated_weight_w = weight_tensor.shape[0] + (weight_tensor.shape[0] - 1) * (dilation_w_factor - 1)
        dilated_weight_h = weight_tensor.shape[1] + (weight_tensor.shape[1] - 1) * (dilation_h_factor - 1)
        if (
            dilated_weight_w > 64
            or dilated_weight_h > 64
            or dilated_weight_w * dilated_weight_h * weight_tensor.shape[2] > 127 * 65536
        ):
            return False

        # check batch size
        if ifm_tensor.shape[0] != 1:
            return False
        return True

    def check_depthwise_convolution_restrictions(self, op):
        # check depth
        ifm_tensor, _, _, ofm_tensor = op.get_ifm_ifm2_weights_ofm()
        if op.attrs["depth_multiplier"] > 1 and not (
            (ifm_tensor.shape[3] == 1) and (ofm_tensor.shape[3] == op.attrs["depth_multiplier"])
        ):
            return False
        return self.check_convolution_restrictions(op)

    def check_pooling_restrictions(self, op):
        # check stride
        if op.attrs["stride_w"] > 3 or op.attrs["stride_h"] > 3:
            return False

        # check data type
        ifm_tensor, _, _, ofm_tensor = op.get_ifm_ifm2_weights_ofm()
        if ifm_tensor.dtype != ofm_tensor.dtype:
            return False

        # check batch size
        if ifm_tensor.shape[0] != 1:
            return False

        if op.type in self.avg_pooling_ops:
            # check kernel size
            if op.attrs["padding"] == b"SAME" and (op.attrs["filter_width"] > 8 or op.attrs["filter_height"] > 8):
                return False
            if (op.attrs["padding"] == b"VALID" and
                (op.attrs["filter_width"] * op.attrs["filter_height"] > 256 * 256 or op.attrs["filter_height"] > 256)):
                return False

        if op.type in self.max_pooling_ops:
            # check kernel size (any padding)
            if op.attrs["filter_width"] * op.attrs["filter_height"] > 256 * 256 or op.attrs["filter_height"] > 256:
                return False
        return True

    def check_resize_restrictions(self, op):
        # check unsupported upscaling factor
        if op.type == "ResizeBilinear":
            upscaled_shape = [op.inputs[0].shape[1] * 2, op.inputs[0].shape[2] * 2]
            out_shape = op.outputs[0].shape[1:3]
            if not op.attrs["align_corners"] and out_shape != upscaled_shape:
                return False
            elif op.attrs["align_corners"] and out_shape != [upscaled_shape[0] - 1, upscaled_shape[1] - 1]:
                return False
        return True

    def check_vector_product_restrictions(self, op):
        # check data type
        ifm_tensor, _, weight_tensor, _ = op.get_ifm_ifm2_weights_ofm()
        if weight_tensor.element_size() > 1:
            return False

        return True

    def check_element_wise_restrictions(self, op):
        # check data type
        ifm_tensor, ifm2_tensor, _, ofm_tensor = op.get_ifm_ifm2_weights_ofm()
        # input and output datatype must match for these operators
        if (op.type in self.binary_elem_wise_min_max_ops | self.unary_elem_wise_main_ops and
            ifm_tensor.dtype != ofm_tensor.dtype):
            return False
        if (op.type in self.binary_elem_wise_add_mul_sub):
            # both inputs must have same type
            if (ifm_tensor.dtype != ifm2_tensor.dtype):
                return False
            # signed input check
            if (ifm_tensor.dtype.type & BaseType.Signed):
                # output must be signed
                if (ofm_tensor.dtype.type & BaseType.Unsigned):
                    return False
                # and 8, 16 or 32-bit
                if (ofm_tensor.element_size() not in (1, 2, 4)):
                    return False
            # unsigned input check, output must be same type or int32
            if (ifm_tensor.dtype.type & BaseType.Unsigned and not
                (ifm_tensor.dtype == ofm_tensor.dtype or
                 ofm_tensor.dtype == DataType.int32)):
                return False

        # check batch size
        if len(ifm_tensor.shape) > 2 and ifm_tensor.shape[0] != 1:
                return False
        if op.type in self.binary_elem_wise_main_ops: # if op type is unary, ifm2_tensor is None
            if len(ifm2_tensor.shape) > 2 and ifm2_tensor.shape[0] != 1:
                return False
        return True

    def check_memory_only_restrictions(self, op):
        if op.type == "StridedSlice":
            # check stride size
            if len(op.inputs) > 3 and any(stride != 1 for stride in op.inputs[3].values):
                return False
            # check ellipsis_mask
            if op.attrs["ellipsis_mask"] != 0:
                return False
            # check if both new_axis_mask and shrink_axis_mask have bit set
            if op.attrs["new_axis_mask"] != 0 and op.attrs["shrink_axis_mask"] != 0:
                return False
        return True