aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/scheduler.py
blob: c35c1566495c7630ce29eb0b005e1c945534bc26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Description:
# The scheduler costs various strategies for scheduling the network in order to select the block configuration.

import enum
from .nn_graph import (
    TensorPurpose,
    TensorSubPurpose,
    TensorFormat,
    MemArea,
    SchedulingStrategy,
    CascadedPass,
    PassPlacement,
    SchedulerRewrite,
    Operation,
    NpuBlockType,
)
from . import live_range
import numpy as np
from . import npu_performance
from . import stats_writer
from .npu_performance import make_bandwidth_array, make_macs_array, make_cycles_array, make_metrics_arrays, PassCycles
import time, copy
from .high_level_command_stream_generator import calc_allowed_ofm_ifm_overlap_for_pass_list
from .shared_buffer_allocation import (
    find_block_configs_suitable_for_pass_and_shared_buffer,
    shared_buffer_allocation_for_pass_and_block_config,
)
from functools import lru_cache


class ParetoMetric(enum.Enum):
    BwCycMem = 1
    BwCycMemBlkH = 2

    def __str__(self):
        return self.name


class SchedulerOptions:
    def __init__(
        self,
        use_cascading=True,
        use_ifm_ofm_overlap=True,
        verbose_schedule=False,
        verbose_pareto_frontier_schedules=False,
        use_ifm_streaming=True,
        pareto_metric=ParetoMetric.BwCycMem,
    ):
        self.use_cascading = use_cascading
        self.use_ifm_ofm_overlap = use_ifm_ofm_overlap
        self.verbose_schedule = verbose_schedule
        self.verbose_pareto_frontier_schedules = verbose_pareto_frontier_schedules
        self.use_ifm_streaming = use_ifm_streaming
        self.pareto_metric = pareto_metric

    def __str__(self):
        return type(self).__name__ + ": " + str(self.__dict__)

    __repr__ = __str__


class Strategy:
    __slots__ = "strat", "param", "passes", "block_configs", "rewrite_list", "bws", "macs", "cycles", "sram_used"

    def __init__(self, strat, param, passes, block_configs, rewrite_list, bws, macs, cycles, sram_used):
        self.strat = strat
        self.param = param
        self.passes = passes
        self.block_configs = block_configs
        self.rewrite_list = (
            rewrite_list  # list of (SchedulerRewrite, Tensor, new sub purpose, purpose param a, purpose param b, pass)
        )
        self.bws = bws
        self.macs = macs
        self.cycles = cycles
        self.sram_used = sram_used

    def __eq__(self, other):
        if self.strat != other.strat:
            return False
        if self.param != other.param:
            return False
        if self.block_configs != other.block_configs:
            return False
        if self.passes != other.passes:
            return False
        if (self.bws != other.bws).any():
            return False
        if (self.macs != other.macs).any():
            return False
        if (self.cycles != other.cycles).any():
            return False
        if self.sram_used != other.sram_used:
            return False
        return True

    def empty(self):
        return not self.passes

    def key(self):
        return self.passes[-1]

    def clone(self):
        return Strategy(
            self.strat,
            self.param,
            self.passes,
            self.block_configs,
            self.rewrite_list,
            self.bws,
            self.macs,
            self.cycles,
            self.sram_used,
        )

    def __str__(self):
        return "<scheduler.Strategy: %s %s %s %s %s %s %s>" % (
            self.strat,
            self.passes,
            self.rewrite_list,
            self.bws,
            self.macs,
            self.cycles,
            self.sram_used,
        )

    __repr__ = __str__


class StrategySet:
    __slots__ = "strats", "bws", "macs", "cycles", "max_sram_used", "total_sram_used"

    def __init__(self, strats=None):
        if strats is None:
            strats = dict()
        self.strats = strats  # final pass in packed pass -> Strategy
        self.bws, self.macs, self.cycles = make_metrics_arrays()
        self.max_sram_used = 0
        self.total_sram_used = 0

    def update_statistics(self):
        self.bws = make_bandwidth_array()
        self.max_sram_used = 0
        for ps, strat in self.strats.items():
            self.bws += strat.bws
            self.macs += strat.macs
            self.cycles += strat.cycles
            self.max_sram_used = max(self.max_sram_used, strat.sram_used)
            self.total_sram_used += strat.sram_used

    def clone_add_strategy(self, new_strat):
        key = new_strat.key()
        if key in self.strats:
            assert new_strat == self.strats[key]
            return self
        else:
            new_strats = dict(self.strats)
            new_strats[key] = new_strat
            new_set = StrategySet(new_strats)
            new_set.bws = self.bws + new_strat.bws
            new_set.macs = self.macs + new_strat.macs
            new_set.cycles = self.cycles + new_strat.cycles
            new_set.max_sram_used = max(self.max_sram_used, new_strat.sram_used)
            new_set.total_sram_used = self.total_sram_used + new_strat.sram_used
            return new_set

    def __eq__(self, other):
        if (self.bws != other.bws).any():
            return False
        if (self.macs != other.macs).any():
            return False
        if (self.cycles != other.cycles).any():
            return False
        if self.max_sram_used != other.max_sram_used:
            return False
        if self.total_sram_used != other.total_sram_used:
            return False
        if self.strats != other.strats:
            return False
        return True

    def __str__(self):
        return "<scheduler.StrategySet: max_sram_used=%s passes_covered=%s>" % (
            self.max_sram_used,
            list(ps.name for ps in self.strats),
        )

    __repr__ = __str__


empty_strategy = Strategy(
    SchedulingStrategy.Unknown, None, [], [], [], make_bandwidth_array(), make_macs_array(), make_cycles_array(), 0
)
INFINITY = 1e30

ABORT_SEARCH = []


def flatten_list_of_lists(lstlst):
    lst = []
    for v in lstlst:
        lst.extend(v)
    return lst


class DynamicProgrammingScheduler:
    def __init__(self, nng, sg, arch, sram_limit, options: SchedulerOptions):
        self.nng = nng
        self.sg = sg
        self.arch = arch
        self.sram_limit = sram_limit
        self.options = copy.copy(options)
        self.use_cascading = options.use_cascading

        if self.arch.feature_map_storage_mem_area != MemArea.Sram:
            self.use_ifm_ofm_overlap = False  # force off IFM/OFM overlap if IFMs and OFMs are not in the SRAM
        self.use_ifm_ofm_overlap = options.use_ifm_ofm_overlap

        self.verbose_schedule = options.verbose_schedule
        self.verbose_pareto_frontier_schedules = options.verbose_pareto_frontier_schedules
        self.mem_area = MemArea.Sram

        self.bandwidth_weights = arch.bandwidth_weights
        self.cycles_weight = arch.cycles_weight
        self.max_sram_used_weight = arch.max_sram_used_weight

        self.n_combinations_searched = 0

        self.feature_maps_not_in_fast_storage = (
            arch.tensor_storage_mem_area[TensorPurpose.FeatureMap] != arch.fast_storage_mem_area
        )

        self.pareto_max_candidates = 16

        self.ifm_stream_npu_blocks = set(
            (NpuBlockType.ConvolutionMxN, NpuBlockType.ConvolutionDepthWise, NpuBlockType.Pooling,)
        )

    num_pareto_metrics = 4
    view_values = ",".join(["d"] * num_pareto_metrics)
    order_values = ["f%d" % (idx,) for idx in range(num_pareto_metrics)]

    def pareto_metric(self, candidate):
        strat, strat_set = candidate
        total_cycles = strat.cycles[PassCycles.Total] + strat_set.cycles[PassCycles.Total]
        bws = strat.bws + strat_set.bws
        last_block_height = 0
        if self.options.pareto_metric == ParetoMetric.BwCycMemBlkH and len(strat.block_configs) > 0:
            last_block_height = strat.block_configs[-1][0]

        return (
            np.tensordot(bws, self.bandwidth_weights, axes=3) + total_cycles * self.cycles_weight,
            strat_set.max_sram_used,
            strat.sram_used,
            last_block_height,
        )

    def filter_pareto_frontier(self, candidates, remove_equally_good_candidates):

        candidates = [cand for cand in candidates if max(cand[0].sram_used, cand[1].max_sram_used) <= self.sram_limit]

        if len(candidates) <= 1:
            return candidates
        assert remove_equally_good_candidates
        start = time.time()
        pareto_vals = np.zeros((len(candidates), DynamicProgrammingScheduler.num_pareto_metrics))
        ids = np.arange(len(candidates), dtype=np.int32)
        for idx, cand in enumerate(candidates):
            pareto_vals[idx] = self.pareto_metric(cand)

        sort_order = np.argsort(
            pareto_vals.view(DynamicProgrammingScheduler.view_values),
            order=DynamicProgrammingScheduler.order_values,
            axis=0,
            kind="stable",
        ).flatten()
        pareto_vals = pareto_vals[sort_order]
        ids = ids[sort_order]

        pareto_frontier = []
        while len(ids) > 0:
            pareto_frontier.append(candidates[ids[0]])
            not_dominated_by_first = (pareto_vals < pareto_vals[0]).any(axis=1)
            ids = ids[not_dominated_by_first]
            pareto_vals = pareto_vals[not_dominated_by_first]

        if len(pareto_frontier) > self.pareto_max_candidates:
            pareto_frontier = self.sort_by_candidate_metric(pareto_frontier)
            pareto_frontier = pareto_frontier[: self.pareto_max_candidates]

        return pareto_frontier

    def candidate_metric(self, candidate):
        strat, strat_set = candidate
        max_sram_used = max(strat_set.max_sram_used, strat.sram_used)
        bws = strat.bws + strat_set.bws
        total_cycles = strat.cycles[PassCycles.Total] + strat_set.cycles[PassCycles.Total]

        return (
            max_sram_used * self.max_sram_used_weight
            + np.tensordot(bws, self.bandwidth_weights, axes=3)
            + total_cycles * self.cycles_weight
        )

    def sort_by_candidate_metric(self, candidate_list):
        sorted_list = list(sorted(candidate_list, key=self.candidate_metric))
        return sorted_list

    def best_candidate(self, candidate_list):
        if len(candidate_list) == 0:
            return ABORT_SEARCH
        if len(candidate_list) == 1:
            return candidate_list[0]
        sorted_list = self.sort_by_candidate_metric(candidate_list)
        return sorted_list[0]

    def graduate_strat(self, strat_type, sram_used, old_strat_data):
        res = []
        for old_strat, old_strat_set in old_strat_data:
            if old_strat.sram_used + sram_used > self.sram_limit:
                continue  # This strategy is bad, drop it
            if old_strat_set.max_sram_used > self.sram_limit:
                continue  # This strategy is bad, drop it
            assert old_strat.strat == SchedulingStrategy.Unknown

            new_strat = old_strat.clone()
            new_strat.strat = strat_type
            new_strat.sram_used = old_strat.sram_used + sram_used

            if self.use_ifm_ofm_overlap:
                overlap = calc_allowed_ofm_ifm_overlap_for_pass_list(
                    new_strat.strat, new_strat.passes, new_strat.block_configs
                )
                new_strat.sram_used -= overlap

            new_strat_set = old_strat_set.clone_add_strategy(new_strat)
            res.append((empty_strategy, new_strat_set))
        return self.filter_pareto_frontier(res, remove_equally_good_candidates=True)

    def append_sram(self, sram_used, old_strat_data):
        res = []
        for old_strat, strat_set in old_strat_data:
            assert old_strat.strat == SchedulingStrategy.Unknown
            assert old_strat.sram_used == 0
            new_strat = old_strat.clone()
            new_strat.sram_used = old_strat.sram_used + sram_used

            res.append((new_strat, strat_set))
        return res

    def append_sram_block_config_performance_metrics(self, sram_used, block_config, metrics, old_strat_data):
        res = []
        for old_strat, strat_set in old_strat_data:
            assert old_strat.strat == SchedulingStrategy.Unknown
            new_strat = old_strat.clone()
            bws, macs, cycles = metrics[:3]

            new_strat.sram_used = old_strat.sram_used + sram_used
            new_strat.block_configs = old_strat.block_configs + [block_config]
            new_strat.bws = old_strat.bws + bws
            new_strat.macs = old_strat.macs + macs
            new_strat.cycles = old_strat.cycles + cycles
            new_strat.bws, new_strat.macs, new_strat.cycles = npu_performance.collate_stats_for_cascaded_pass(
                self.arch, new_strat.bws, new_strat.macs, new_strat.cycles
            )

            res.append((new_strat, strat_set))
        return res

    def append_sram_pass_block_config_performance_metrics_rewrite_list(
        self, sram_used, new_pass, block_config, metrics, rewrite_list, old_strat_data
    ):
        res = []
        for old_strat, strat_set in old_strat_data:
            assert old_strat.strat == SchedulingStrategy.Unknown
            new_strat = old_strat.clone()
            bws, macs, cycles = metrics[:3]
            new_strat.sram_used = old_strat.sram_used + sram_used
            new_strat.block_configs = old_strat.block_configs + [block_config]
            new_strat.bws = old_strat.bws + bws
            new_strat.macs = old_strat.macs + macs
            new_strat.cycles = old_strat.cycles + cycles
            new_strat.passes = old_strat.passes + [new_pass]
            new_strat.bws, new_strat.macs, new_strat.cycles = npu_performance.collate_stats_for_cascaded_pass(
                self.arch, new_strat.bws, new_strat.macs, new_strat.cycles
            )
            new_strat.rewrite_list = old_strat.rewrite_list + rewrite_list
            res.append((new_strat, strat_set))
        return res

    def append_sram_rewrite_list(self, sram_used, rewrite_list, old_strat_data):
        res = []
        for old_strat, strat_set in old_strat_data:
            assert old_strat.strat == SchedulingStrategy.Unknown
            new_strat = old_strat.clone()
            new_strat.sram_used = old_strat.sram_used + sram_used
            new_strat.rewrite_list = old_strat.rewrite_list + rewrite_list
            res.append((new_strat, strat_set))
        return res

    def pass_to_strat(self, strat_data):
        res = {}
        for strat in strat_data[1].strats.values():
            for ps in strat.passes:
                res[ps] = strat
        return res

    def compatible_strats(self, a, b):
        intersection = a.keys() & b.keys()
        for k in intersection:
            if a[k] != b[k]:
                return False
        return True

    def collate_strats_for_passes(self, all_passes):
        if len(all_passes) == 0:
            return [(empty_strategy, StrategySet(dict()))]
        if len(all_passes) == 1:
            return all_passes[0]  # save some space in the common case
        all_strands = [[self.pass_to_strat(strat_data) for strat_data in strand] for strand in all_passes]
        prev_combos = [dict()]
        for j, strand in enumerate(all_strands):
            new_combos = []
            for i, alt in enumerate(strand):
                for prev in prev_combos:
                    if self.compatible_strats(prev, alt):
                        cmb = dict(prev)
                        cmb.update(all_passes[j][i][1].strats)
                        new_combos.append(cmb)
            prev_combos = new_combos

        res = []
        for d in prev_combos:
            s = StrategySet(d)
            s.update_statistics()
            res.append((empty_strategy, s))
        return res

    def search_all_but_one_predecessor(self, ps, pred_pass, pred_pass_data):
        # get the rest of the predecessors
        other_predecessors = [pred for pred in ps.dag_predecessors if pred != pred_pass]
        other_predecessor_data = self.search_pass_list(other_predecessors)

        # pred strat data has an incomplete strategy, which we need
        # to continue on, whereas the other ones have completed strategies.
        # we need to merge these, but keep the incomplete strategy too.

        res = []
        for pred_pass_strat, pred_pass_strat_set in pred_pass_data:
            all_strats = [
                [(empty_strategy, pred_pass_strat_set)],  # pred strat data but with a dummy empty strategy
                other_predecessor_data,  # this one is fine to use as-is
            ]
            collated_strat_data = self.collate_strats_for_passes(all_strats)
            strat_data = [(pred_pass_strat, strat_set) for _, strat_set in collated_strat_data]
            res.extend(strat_data)
        return res

    def calc_non_local_mem_usage(self):
        ignore_subgraph_input_output_tensors = self.sg.placement == PassPlacement.Cpu
        range_set = live_range.extract_live_ranges_from_passes(
            self.sg,
            self.mem_area,
            mark_output_tensors_overlapping_with_input_tensors=True,
            ignore_subgraph_input_output_tensors=ignore_subgraph_input_output_tensors,
        )
        range_dict = range_set.ranges

        # find which ranges overlap passes but aren't input/outputs of the passes.
        # these won't be counted by the dynamic programming search and must be counted in manually.
        end_pos = max(ps.time for ps in self.sg.passes) + 2
        mem_usage = np.zeros(end_pos) + self.sg.base_sram_used
        non_local_mem_usage = np.zeros(end_pos, dtype=np.int64)

        for tens, rng in range_dict.items():
            storage_size = tens.storage_size()
            assert tens.mem_area == self.mem_area
            mem_usage[rng.start_time : rng.end_time] += storage_size

        for ps in self.sg.passes:
            local_mem_usage = 0
            for tens in ps.inputs + ps.outputs + ps.intermediates:
                if tens.mem_area != self.mem_area:
                    continue

                local_mem_usage += tens.storage_size()

            non_local_mem_usage[ps.time] = mem_usage[ps.time] - local_mem_usage

        self.non_local_mem_usage = non_local_mem_usage

    def search(self):
        self.calc_non_local_mem_usage()
        starting_passes = [ps for ps in self.sg.passes if not ps.successors]
        strat_data = self.search_pass_list(starting_passes)

        _, best_set = self.best_candidate(strat_data)

        if self.verbose_pareto_frontier_schedules:
            print(
                "Scheduler searched %d combinations and found %d candidate schedules along the pareto frontier"
                % (self.n_combinations_searched, len(strat_data,))
            )
            for idx, (_, strat_set) in enumerate(strat_data):
                extra = ""
                if strat_set == best_set:
                    extra = "(Best candidate)"
                print("Candidate", idx, extra)
                memory_used = {MemArea.Sram: strat_set.max_sram_used}
                stats_writer.print_performance_metrics_for_strat(
                    self.arch,
                    "",
                    strat_set.cycles,
                    strat_set.macs,
                    strat_set.bws,
                    self.nng.batch_size,
                    memory_used,
                    len(self.sg.passes),
                    len(strat_set.strats),
                )

        return best_set

    def search_pass_list(self, pass_list):
        all_strats = []
        for ps in pass_list:
            strat = self.search_output(ps)
            all_strats.append(strat)
        strat_data = self.collate_strats_for_passes(all_strats)
        for strd in strat_data:
            for ps in pass_list:
                assert ps in strd[1].strats  # should have strategies for everything we asked to search
        return strat_data

    def search_predecessors(self, ps):

        # protect against graphs with loops. collate_strats_for_passes will sort this out later so that
        # we have strats for all passes

        pass_list = ps.dag_predecessors
        strat_data = self.search_pass_list(pass_list)

        return strat_data

    @lru_cache(maxsize=None)
    def search_output(self, ps):

        assert ps in self.sg.passes
        candidate_list = []

        candidate_list.extend(self.search_weight_streaming_output(ps))

        if self.options.use_ifm_streaming:
            candidate_list.extend(self.search_ifm_streaming_output(ps))

        best = self.filter_pareto_frontier(candidate_list, remove_equally_good_candidates=True)

        if not best:
            print(
                "Warning: Dynamic search programming algorithm failed for pass %s, invoking fallback strategy"
                % (ps.name,)
            )
            return self.search_predecessors(ps)

        return best

    def search_ifm_streaming_output(self, ps):
        if ps.placement != PassPlacement.Npu:
            return ABORT_SEARCH
        if ps.npu_block_type not in self.ifm_stream_npu_blocks:
            return ABORT_SEARCH
        strat_data = self.search_ifm_streaming_body(ps, False)

        sram_used = self.non_local_mem_usage[ps.time]
        for tens in ps.outputs:
            if tens.mem_area == self.mem_area:
                sram_used += tens.storage_size()

        return self.graduate_strat(SchedulingStrategy.IfmStream, sram_used, strat_data)

    @lru_cache(maxsize=None)
    def search_ifm_streaming_body(self, ps, force_outputs_to_fast_storage):
        if ps.placement != PassPlacement.Npu:
            return ABORT_SEARCH
        if ps.npu_block_type not in self.ifm_stream_npu_blocks:
            return ABORT_SEARCH
        ifm_input_search_resuls = self.search_ifm_streaming_input(ps)
        res = []

        base_sram_used = 0
        for tens in ps.intermediates:
            if tens.mem_area == self.mem_area:
                base_sram_used += tens.storage_size()

        all_block_configs = self.get_block_configs(ps)
        for block_config in all_block_configs:
            all_strats = []

            if self.use_cascading:
                all_strats.extend(self.search_ifm_streaming_partial(ps, block_config))

            all_strats.extend(ifm_input_search_resuls)

            rewrite_list = []
            sram_used = base_sram_used

            metrics = npu_performance.performance_metrics_for_pass(
                self.arch,
                ps,
                block_config,
                rewrite_list=rewrite_list,
                force_outputs_to_fast_storage=force_outputs_to_fast_storage,
            )

            res.extend(
                self.append_sram_pass_block_config_performance_metrics_rewrite_list(
                    sram_used, ps, block_config, metrics, rewrite_list, all_strats
                )
            )

        self.n_combinations_searched += len(res)
        res = self.filter_pareto_frontier(res, remove_equally_good_candidates=True)
        return res

    def search_ifm_streaming_partial(self, ps, block_config):
        if ps.placement != PassPlacement.Npu:
            return ABORT_SEARCH

        if len(ps.inputs) < 1:
            return ABORT_SEARCH

        ifm_tensor = ps.ifm_tensor

        if ifm_tensor is None:
            return ABORT_SEARCH
        if ifm_tensor.purpose != TensorPurpose.FeatureMap:
            return ABORT_SEARCH
        if not ifm_tensor.storage_shape or len(ifm_tensor.storage_shape) != 4:
            return ABORT_SEARCH

        pred_pass_list = []
        for pred_candidate in ps.dag_predecessors:
            if len(pred_candidate.outputs) == 1 and pred_candidate.outputs[0] == ifm_tensor:
                # we found a predecessor that produces this IFM tensor
                if len(pred_candidate.successors) == 1 and pred_candidate.successors[0] == ps:
                    # and it only has one successor, namely us
                    if pred_candidate.placement == PassPlacement.Npu:
                        if pred_candidate.npu_block_type in self.ifm_stream_npu_blocks:
                            # and it is on the Npu and fusable - it's a candidate
                            pred_pass_list.append(pred_candidate)

        if not pred_pass_list:
            return ABORT_SEARCH

        all_candidates = []
        for pred_pass in pred_pass_list:
            # recurse into the next pass
            ifm_strat_data = self.search_ifm_streaming_body(pred_pass, self.feature_maps_not_in_fast_storage)

            strat_data = self.search_all_but_one_predecessor(ps, pred_pass, ifm_strat_data)
            for strat_opt in strat_data:

                pred_pass_block_config = strat_opt[0].block_configs[-1]
                rolling_buffer_dims = npu_performance.rolling_buffer_dims_from_passes(
                    self.arch, pred_pass, pred_pass_block_config, ps, block_config
                )
                if rolling_buffer_dims is None:
                    continue  # this does not pack properly, skip it.

                sram_used = 0
                for tens in ps.inputs:
                    if tens != ifm_tensor:
                        if tens.mem_area == self.mem_area:
                            sram_used += tens.storage_size()

                rolling_buffer_y, rolling_buffer_x = rolling_buffer_dims

                rewrite_list = [
                    (
                        SchedulerRewrite.ChangeTensorSubPurpose,
                        ifm_tensor,
                        TensorSubPurpose.RollingBufferY,
                        rolling_buffer_y,
                        None,
                        ps,
                    )
                ]
                sram_used += ifm_tensor.storage_size_for_sub_purpose(
                    TensorSubPurpose.RollingBufferY, rolling_buffer_y, None
                )

                all_candidates.extend(self.append_sram_rewrite_list(sram_used, rewrite_list, [strat_opt]))

        self.n_combinations_searched += len(all_candidates)
        return all_candidates

    def get_block_configs(self, ps):
        if ps.placement != PassPlacement.Npu:
            return [(1, 1, 1, 1)] # default

        block_configs = find_block_configs_suitable_for_pass_and_shared_buffer(self.arch, ps)

        # Take a limited number of the largest blocks
        if self.arch.block_config_limit > 0:
            # Sort by block area, followed by depth
            block_configs.sort(key=lambda cfg: (cfg[0] * cfg[1]) << 8 | cfg[3], reverse=True)
            bound = min(len(block_configs), self.arch.block_config_limit)
            # We take 'n' from the fat end of the list, and 'n' from the thin end of the list.
            tmp = block_configs[:bound]
            tmp.extend(block_configs[max(bound, len(block_configs) - bound) :])
            block_configs = tmp

        return block_configs

    def search_ifm_streaming_input(self, ps):
        sram_used = 0
        for tens in ps.inputs:
            if tens.mem_area == self.mem_area:
                sram_used += tens.storage_size()

        return self.append_sram(sram_used, self.search_predecessors(ps))

    def search_weight_streaming_output(self, ps):
        strat_data = self.search_weight_streaming_body(ps)

        sram_used = self.non_local_mem_usage[ps.time]
        for tens in ps.outputs:
            if tens.mem_area == self.mem_area:
                sram_used += tens.storage_size()

        return self.graduate_strat(SchedulingStrategy.WeightStream, sram_used, strat_data)

    @lru_cache(maxsize=None)
    def search_weight_streaming_body(self, ps):

        strat_data = self.search_weight_streaming_input(ps)

        res = []

        all_block_configs = self.get_block_configs(ps)

        for block_config in all_block_configs:

            sram_used = 0
            rewrite_list = []

            for tens in ps.intermediates:
                if tens.mem_area == self.mem_area:
                    if tens.purpose == TensorPurpose.Weights:
                        sram_used += tens.storage_size_for_sub_purpose(
                            TensorSubPurpose.DoubleBuffer, block_config[3]
                        )
                        rewrite_list.append(
                            (
                                SchedulerRewrite.ChangeTensorSubPurpose,
                                tens,
                                TensorSubPurpose.DoubleBuffer,
                                block_config[3],
                                None,
                                ps,
                            )
                        )
                    else:
                        sram_used += tens.storage_size()

            metrics = npu_performance.performance_metrics_for_pass(
                self.arch, ps, block_config, rewrite_list=rewrite_list
            )

            res.extend(
                self.append_sram_pass_block_config_performance_metrics_rewrite_list(
                    sram_used, ps, block_config, metrics, rewrite_list, strat_data
                )
            )

        self.n_combinations_searched += len(res)
        res = self.filter_pareto_frontier(res, remove_equally_good_candidates=True)
        return res

    def search_weight_streaming_input(self, ps):
        sram_used = 0
        for tens in ps.inputs:
            if tens.mem_area == self.mem_area:
                sram_used += tens.storage_size()

        return self.append_sram(sram_used, self.search_predecessors(ps))

    def apply_result(self, strat_set, arch):
        pass_to_cascaded_pass = dict()
        for _, strat in strat_set.strats.items():
            # rewrite the tensors that need this first. e.g. make rolling buffers
            inputs = []
            intermediates = []
            outputs = []

            for ps in strat.passes:
                inputs += ps.inputs
                intermediates += ps.intermediates
                outputs += ps.outputs

            for tens in set(inputs) & set(outputs):
                # tensors that are in both sets are intermediates

                # find pass with input/output tensor, and check if they are both placed on NPU
                input_placement = None
                output_placement = None
                for ps in strat.passes:
                    if tens in ps.inputs:
                        input_placement = ps.placement
                    if tens in ps.outputs:
                        output_placement = ps.placement
                if input_placement == output_placement == PassPlacement.Npu:
                    tens.set_format(TensorFormat.NHCWB16, arch)

                intermediates.append(tens)
                inputs.remove(tens)
                outputs.remove(tens)

            for rewrite_op, tens, sub_purpose, param_a, param_b, ps in strat.rewrite_list:
                if rewrite_op == SchedulerRewrite.ChangeTensorSubPurpose:
                    tens.mem_area = self.arch.fast_storage_mem_area
                    tens.set_new_sub_purpose(sub_purpose, param_a, param_b)
                else:
                    assert 0, "unknown rewrite_op " + str(rewrite_op)

            is_element_wise = True
            for ps in strat.passes:
                assert ps.placement == strat.passes[0].placement
                if not ps.is_element_wise:
                    is_element_wise = False
                    break

            cascaded_pass = CascadedPass(
                strat.passes[0].name,
                strat.strat,
                inputs,
                intermediates,
                outputs,
                strat.passes,
                strat.passes[0].placement,
                is_element_wise,
            )
            assert strat.sram_used >= 0
            cascaded_pass.sram_used = strat.sram_used

            for idx, ps in enumerate(strat.passes):
                assert ps not in pass_to_cascaded_pass
                pass_to_cascaded_pass[ps] = cascaded_pass
                ps.cascade = cascaded_pass
                ps.block_config = strat.block_configs[idx]

                if ps.placement == PassPlacement.Npu:
                    ps.shared_buffer = shared_buffer_allocation_for_pass_and_block_config(
                        self.arch, ps, ps.block_config
                    )
                    assert ps.shared_buffer is not None

                for op in ps.ops:
                    subgraph = op.attrs.get("subgraph")
                    if subgraph:
                        subgraph.base_sram_used = cascaded_pass.sram_used

        # all passes should have a cascaded pass now
        if len(pass_to_cascaded_pass) != len(self.sg.passes):
            print(
                "mismatch: we have %d passes, but only %d have cascaded passes associated"
                % (len(self.sg.passes), len(pass_to_cascaded_pass))
            )
            for ps in self.sg.passes:
                if not ps in pass_to_cascaded_pass:
                    print("%3d pass missing cascaded pass %s" % (ps.time, ps))

            assert len(pass_to_cascaded_pass) == len(self.sg.passes)
        # we have all the passes, but we need to put them in order and build predecessor/successor links.

        visit_pass_set = set()
        cascaded_passes = []

        def visit_pass(ps):
            if ps in visit_pass_set:
                return
            visit_pass_set.add(ps)

            cps = ps.cascade
            dont_traverse = set(cps.passes)

            for ps in cps.passes:
                for pred in ps.predecessors:
                    if pred in dont_traverse:
                        continue
                    visit_pass(pred)

            cascaded_passes.append(cps)

        starting_passes = [ps for ps in self.sg.passes if not ps.successors]
        for ps in starting_passes:
            visit_pass(ps)

        # reorder so startup init cascaded passes come first
        def is_startup_cascaded_pass(cps):
            if not cps.passes:
                return False
            return cps.placement == PassPlacement.StartupInit

        cascaded_passes = [cps for cps in cascaded_passes if is_startup_cascaded_pass(cps)] + [
            cps for cps in cascaded_passes if not is_startup_cascaded_pass(cps)
        ]

        self.sg.cascaded_passes = cascaded_passes
        self.sg.build_cascaded_pass_links()


def schedule_passes(nng, arch, options: SchedulerOptions):

    for sg in nng.subgraphs:
        sg.base_sram_used = 0

    for sg in nng.subgraphs:
        # re-entering the same nodes from different contexts requires us to
        # build a simplified directed acyclic (DAG) version of the graph to
        # use for traversal, rather than using a visit dictionary. this avoids
        # recursing infinitely due to loops.
        sg.build_pass_dag_predecessors()

        dps = DynamicProgrammingScheduler(nng, sg, arch, arch.sram_size, options)

        strat_set = dps.search()

        dps.apply_result(strat_set, arch)

        if options.verbose_schedule:
            sg.print_cascaded_passes()