aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/register_command_stream_generator.py
blob: e5e4fb1434f8cb984a12cbbca4c3367a4e7955dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Register level (low-level) command stream generation for Ethos-U55. Takes a high-level command stream and generates
# all the register settings. Calculates dependencies between commands and inserts wait operations. And generates a bit
# stream suitable for interpretation by the Ethos-U55 processor.
from collections import defaultdict
from collections import namedtuple
from enum import Enum
from enum import IntEnum

import numpy as np

from . import scaling
from .architecture_features import ArchitectureFeatures
from .architecture_features import Block
from .architecture_features import Rect
from .architecture_features import SharedBufferArea
from .architecture_features import SHRAMElements
from .data_type import BaseType
from .data_type import DataType
from .ethos_u55_regs.ethos_u55_regs import acc_format
from .ethos_u55_regs.ethos_u55_regs import activation
from .ethos_u55_regs.ethos_u55_regs import cmd0
from .ethos_u55_regs.ethos_u55_regs import cmd1
from .ethos_u55_regs.ethos_u55_regs import elementwise_mode
from .ethos_u55_regs.ethos_u55_regs import ifm_precision
from .ethos_u55_regs.ethos_u55_regs import pooling_mode
from .ethos_u55_regs.ethos_u55_regs import resampling_mode
from .ethos_u55_regs.ethos_u55_regs import rounding
from .high_level_command_stream import CommandType
from .numeric_util import clamp_sigmoid
from .numeric_util import clamp_tanh
from .numeric_util import full_shape
from .numeric_util import quantise_float32
from .numeric_util import round_away_zero
from .numeric_util import round_up_to_int
from .operation import NpuBlockType
from .operation import Op
from .tensor import MemType
from .tensor import TensorBlockTraversal
from .tensor import TensorFormat
from .tensor import TensorPurpose


class RegisterMachine:
    def __init__(self):
        self.n_banks = 1
        self.registers = [defaultdict(lambda: None) for _ in range(self.n_banks)]
        self.bank_idx = 0

    def set_register(self, reg, value):
        is_changed = self.registers[self.bank_idx][reg] != value
        self.registers[self.bank_idx][reg] = value
        # is_changed = True # force command
        return is_changed

    def switch_bank(self):
        self.bank_idx = (self.bank_idx + 1) % self.n_banks


class CmdMode(IntEnum):
    NoPayload = 0x0000
    Payload32 = 0x4000
    Mask = 0xC000
    CmdOpMask = 0x03FF


class BasePointerIndex(IntEnum):
    WeightTensor = 0  # base address index for the Weight tensor
    ScratchTensor = 1  # base address index for the Scratch_tensor in the TensorArena
    ScratchFastTensor = 2  # base address for the Scratch_fast_tensor
    Mem2Mem = (1 << 8) | (3 << 0)  # base address slot for memory 2 memory transfer


# TODO: Replace with definitions from ethos_u55_regs
class IFM2Broadcast(IntEnum):
    BroadcastHdim = 1 << 0
    BroadcastWdim = 1 << 1
    BroadcastCdim = 1 << 2
    ReverseOperandOrder = 1 << 6
    UseIFM2Scalar = 1 << 7


class CommandStreamEmitter:
    def __init__(self):
        self.cmd_stream = []
        self.reg_machine = [RegisterMachine(), RegisterMachine()]
        self.last_absolute_wait = defaultdict(int)

    def get_reg_machine(self, cmd):
        if "DMA" in cmd.name:
            return self.reg_machine[1]
        else:
            return self.reg_machine[0]

    def size_in_bytes(self):
        sz = 0
        for cmd in self.cmd_stream:
            sz += len(cmd) * 4
        return sz

    def to_list(self):
        return [elem for cmd in self.cmd_stream for elem in cmd]

    def print_cmds(self):
        print("Code:    Command:                       Param: Payload:")
        for words_for_one_command in self.cmd_stream:
            code = words_for_one_command[0] & 0x0000FFFF  # lower 16 bits
            param = words_for_one_command[0] >> 16  # higher 16 bits

            payload_mode = CmdMode(code & CmdMode.Mask)

            # code and command
            s = "  0x%04x " % code
            if payload_mode == CmdMode.NoPayload:
                s += str(cmd0(code & CmdMode.CmdOpMask))
            else:
                s += str(cmd1(code & CmdMode.CmdOpMask))

            s = s.ljust(40)
            s += "%5d" % param

            # payload
            if payload_mode == CmdMode.Payload32:
                s += "   0x%08x (%d)" % (words_for_one_command[1], words_for_one_command[1])
            else:
                s += "   -"

            print(s)

    def cmd0_with_param(self, cmd, param):
        if isinstance(param, Enum):
            param = int(param.value)
        else:
            param = int(param)
        param = param & 0xFFFF
        command = cmd.value | (param << 16)
        if not self.get_reg_machine(cmd).set_register(cmd, (command, param)):
            return

        # This is not a redundant command, actually write it
        self.cmd_stream.append((command,))

    def cmd1_with_offset(self, cmd, offset, param=0x0):
        offset = int(offset) & 0xFFFFFFFFF
        command = cmd.value | CmdMode.Payload32.value | (param << 16)

        if not self.get_reg_machine(cmd).set_register(cmd, (command, offset)):
            return

        # This is not a redundant command, actually write it
        self.cmd_stream.append((command, offset))

    def cmd_wait(self, cmd, channel, outstanding_count):
        param = (16 * channel) + outstanding_count
        command = ((param & 0xFFFF) << 16) | cmd.value
        self.cmd_stream.append((command,))

    def cmd_do_operation(self, cmd, param=0):
        param = int(param)
        command = ((param & 0xFFFF) << 16) | cmd.value

        self.cmd_stream.append((command,))
        self.get_reg_machine(cmd).switch_bank()


Watermark = namedtuple("Watermark", ["npu", "dma"])


def get_cmd_wait_dependency(arch, cmd_stream, memory_accesses, cmd_index, watermark: Watermark):
    cmd = cmd_stream[cmd_index]
    cmd_access = memory_accesses[cmd]
    index = cmd_index - 1

    # NPU dependency tracking
    npu_outstanding = -1
    npu_ops = 0
    npu_index = watermark.npu

    # DMA dependency tracking
    dma_outstanding = -1
    dma_ops = 0
    dma_index = watermark.dma

    # Seek back in the command stream looking for NPU or DMA dependencies
    # but only as far as the first dependency or the watermarks (dependencies
    # before this point have been satisfied already).
    # The watermark moves to after the latest element we must wait for, not
    # the command that issues the wait.
    # NPU->NPU dependency is handled via blockdep.
    while (index >= npu_index) or (index >= dma_index):
        prev_cmd = cmd_stream[index]
        prev_access = memory_accesses[prev_cmd]

        # Check DMA consuming NPU output
        if prev_cmd.cmdtype == CommandType.NpuStripe:
            if index >= npu_index:
                if (cmd.cmdtype == CommandType.DMA) and (npu_outstanding == -1) and prev_access.conflicts(cmd_access):
                    npu_outstanding = npu_ops
                npu_ops = npu_ops + 1  # Count NPU ops in the pipeline
                if npu_ops >= arch.max_outstanding_kernels:
                    npu_index = max(index + 1, npu_index)

        # Check NPU consuming DMA output
        elif prev_cmd.cmdtype == CommandType.DMA:
            if index >= dma_index:
                if cmd.cmdtype == CommandType.NpuStripe:
                    if (dma_outstanding == -1) and prev_access.conflicts(cmd_access):
                        dma_outstanding = dma_ops
                dma_ops = dma_ops + 1  # Count DMA ops in the pipeline
                if dma_ops >= arch.max_outstanding_dma:
                    dma_index = max(index + 1, dma_index)

        index = index - 1

    # Update DMA watermark if we didn't see any and the NPU pipeline is full
    if (dma_ops == 0) and (npu_ops >= arch.max_outstanding_kernels):
        dma_index = cmd_index

    # Bring the search watermark forwards as we complete for those dependencies
    watermark = Watermark(npu_index, dma_index)
    outstanding = Watermark(npu_outstanding, dma_outstanding)

    return watermark, outstanding


def has_prev_op_dependency(prev_cmd, cmd):
    if prev_cmd is None:
        return False
    if (prev_cmd.cmdtype == cmd.cmdtype == CommandType.NpuStripe) and (prev_cmd.ps != cmd.ps):
        if prev_cmd.ofm_tensor.equivalent(cmd.ifm_tensor):
            return True
        elif cmd.ifm2_tensor is not None:
            return prev_cmd.ofm_tensor.equivalent(cmd.ifm2_tensor)
    return False


def get_op_ofm_rect(cmd):
    start = full_shape(4, cmd.ofm_box.start_coord, 0)
    end = full_shape(4, cmd.ofm_box.end_coord, 1)
    return Rect(start[-2], start[-3], start[-1], end[-2] - 1, end[-3] - 1, end[-1] - 1)


def get_op_ifm_rect(cmd):
    start = full_shape(4, cmd.ifm_box.start_coord, 0)
    end = full_shape(4, cmd.ifm_box.end_coord, 1)
    return Rect(start[-2], start[-3], start[-1], end[-2] - 1, end[-3] - 1, end[-1] - 1)


def get_op_ifmofm_block_depth(arch, cmd):
    # Note: NOT equivalent to the normal ifm block depth calculation since
    # it takes into account 'depthless' block operations by returning full
    # depth
    if cmd.ps.npu_block_type in (
        NpuBlockType.ConvolutionDepthWise,
        NpuBlockType.Pooling,
        NpuBlockType.ElementWise,
        NpuBlockType.ReduceSum,
    ):
        return cmd.ofm_box.get_size_shape()[-1]

    return arch.calc_ifm_block_depth(cmd.ifm_box.get_size_shape()[-1], cmd.ifm_tensor.dtype.bits)


def get_op_padding_lt(cmd):
    if cmd.ps.npu_block_type not in (
        NpuBlockType.ConvolutionDepthWise,
        NpuBlockType.Pooling,
        NpuBlockType.ConvolutionMxN,
        NpuBlockType.ReduceSum,
    ):
        return (0, 0)

    explicit_padding = list(cmd.ps.primary_op.attrs["explicit_padding"])  # (top, left, bottom, right)

    # Check if this is for horizontal ifm streaming
    if not (cmd.is_first_h_stripe and cmd.is_last_h_stripe):
        explicit_padding[0] = cmd.pad_top
        explicit_padding[2] = cmd.pad_bottom

    return (explicit_padding[1], explicit_padding[0])


def ifm_ifm2_correct_order(ifm_shape, ifm2_shape):
    if ifm_shape == []:
        # Scalar needs to be in IFM2
        return False
    elif ifm2_shape == []:
        return True

    for ifm, ifm2 in zip(ifm_shape, ifm2_shape):
        if ifm != ifm2 and ifm == 1:
            # Broadcasted FM needs to be in IFM2
            return False

    return True


def generate_register_command_stream(nng, sg, arch, verbose=False):
    emit = CommandStreamEmitter()

    if arch.feature_map_storage_mem_area == arch.fast_storage_mem_area:
        base_ptr_idx_map = {
            MemType.Permanent_NPU: BasePointerIndex.WeightTensor,
            MemType.Permanent_CPU: BasePointerIndex.WeightTensor,
            MemType.Scratch: BasePointerIndex.ScratchTensor,
            MemType.Scratch_fast: BasePointerIndex.ScratchTensor,
        }
    else:
        base_ptr_idx_map = {
            MemType.Permanent_NPU: BasePointerIndex.WeightTensor,
            MemType.Permanent_CPU: BasePointerIndex.WeightTensor,
            MemType.Scratch: BasePointerIndex.ScratchTensor,
            MemType.Scratch_fast: BasePointerIndex.ScratchFastTensor,
        }

    # Maps an AccumulatorType enum to the corresponding acc_format value
    acc_format_map = {
        SHRAMElements.Acc16: acc_format.FP_S5_10.value,
        SHRAMElements.Acc32: acc_format.INT_32BIT.value,
        SHRAMElements.Acc40: acc_format.INT_40BIT.value,
    }

    # Maps an elementwise op type to an elementwise_mode enum value used by NPU_OP_ELEMENTWISE
    elementwise_mode_map = {
        Op.Mul: elementwise_mode.MUL.value,
        Op.Add: elementwise_mode.ADD.value,
        Op.Sub: elementwise_mode.SUB.value,
        Op.Minimum: elementwise_mode.MIN.value,
        Op.Maximum: elementwise_mode.MAX.value,
        Op.LeakyRelu: elementwise_mode.LRELU.value,
        Op.Abs: elementwise_mode.ABS.value,
        Op.CLZ: elementwise_mode.CLZ.value,
        Op.SHR: elementwise_mode.SHR.value,
        Op.SHL: elementwise_mode.SHL.value,
    }

    cmd_stream = []
    memory_accesses = {}
    for cmd in sg.high_level_command_stream:
        if cmd.cmdtype == CommandType.NpuStripe and cmd.ps.npu_block_type == NpuBlockType.Default:
            print("Warning: Skipping register command stream generation for", cmd.ps)
        else:
            cmd_stream.append(cmd)
            memory_accesses[cmd] = cmd.get_memory_accesses()

    def emit_cmd_waits(cmd_waits):
        if cmd_waits.npu >= 0:
            emit.cmd_wait(cmd0.NPU_OP_KERNEL_WAIT, 0, cmd_waits.npu)

        if cmd_waits.dma >= 0:
            emit.cmd_wait(cmd0.NPU_OP_DMA_WAIT, 0, cmd_waits.dma)

    # Initialise operator dependency state
    prev_ifm_rect = cur_ifm_rect = None
    prev_ifm_block_depth = cur_ifm_block_depth = None
    prev_ofm_rect = cur_ofm_rect = None
    prev_ofm_block = cur_ofm_block = None
    prev_kernel = cur_kernel = None
    prev_cmd = None

    if arch.is_yoda_system:
        emit.cmd0_with_param(cmd0.NPU_SET_PARALLEL_MODE, arch.ncores - 1)

    dep_watermark = Watermark(0, 0)

    for cmd_index, cmd in enumerate(cmd_stream):
        dep_watermark, cmd_waits = get_cmd_wait_dependency(arch, cmd_stream, memory_accesses, cmd_index, dep_watermark)

        if cmd.cmdtype == CommandType.DMA:
            start_coord = cmd.box.start_coord

            src_addr = cmd.in_tensor.address_for_coordinate(start_coord)
            dst_addr = cmd.out_tensor.address_for_coordinate(start_coord)

            if cmd.in_tensor.compressed_values is not None:
                if cmd.out_tensor.purpose == TensorPurpose.FSBias:
                    sz = cmd.in_tensor.storage_size()
                else:
                    stream_index = cmd.in_tensor.compressed_stream_index_from_coord(start_coord)
                    sz = cmd.in_tensor.size_of_compressed_stream(stream_index)
            else:
                sz = cmd.in_tensor.address_for_coordinate(cmd.box.end_coord, is_top_box=True) - src_addr

            emit.cmd0_with_param(cmd0.NPU_SET_DMA0_SRC_REGION, base_ptr_idx_map[cmd.in_tensor.mem_type])
            emit.cmd1_with_offset(cmd1.NPU_SET_DMA0_SRC, src_addr)
            if cmd.out_tensor.purpose == TensorPurpose.LUT:
                emit.cmd0_with_param(cmd0.NPU_SET_DMA0_DST_REGION, BasePointerIndex.Mem2Mem)
            else:
                emit.cmd0_with_param(cmd0.NPU_SET_DMA0_DST_REGION, base_ptr_idx_map[cmd.out_tensor.mem_type])

            emit.cmd1_with_offset(cmd1.NPU_SET_DMA0_DST, dst_addr)
            emit.cmd1_with_offset(cmd1.NPU_SET_DMA0_LEN, sz)
            dma_channel = 0
            mode = 0  # From external to external

            emit_cmd_waits(cmd_waits)
            emit.cmd_do_operation(cmd0.NPU_OP_DMA_START, dma_channel * 16 + mode)

        elif cmd.cmdtype == CommandType.NpuStripe:

            ps = cmd.ps
            primary_op = ps.primary_op
            npu_block_type = ps.npu_block_type
            # Specifies if global scale from the NPU_SET_OFM_SCALE register should be used instead of per-channel scale
            use_global_scale = False
            # Specifies type of rounding to be used.
            rounding_mode = (
                rounding.NATURAL if primary_op.attrs.get("rounding_mode", "") == b"NATURAL" else rounding.TFL
            )
            if primary_op.type == Op.ResizeBilinear:
                rounding_mode = rounding.TRUNCATE
            fmf = primary_op.memory_function
            faf = primary_op.activation
            fused_quantize = any(op.type == Op.Quantize for op in ps.ops)
            # Force output scale, used in operations with fused LUT
            # Note: with current LUT support, forced_ofm_quantization is always equal to cmd.ofm_tensor.quantization
            # except when primary_op is AddAct + 0 (no-op) + LUT
            forced_ofm_quantization = primary_op.forced_output_quantization
            ofm_quant = cmd.ofm_tensor.quantization
            if forced_ofm_quantization is not None:
                ofm_quant = forced_ofm_quantization

            # Specifies which operand to apply scaling to in bitexact elementwise ADD/SUB
            op_to_scale = 0

            # Update state history
            prev_ifm_rect = cur_ifm_rect
            prev_ifm_block_depth = cur_ifm_block_depth
            prev_ofm_rect = cur_ofm_rect
            prev_ofm_block = cur_ofm_block
            prev_kernel = cur_kernel
            cur_kernel = ps.primary_op.kernel if ps.primary_op else None

            block_config = ps.block_config
            emit.cmd0_with_param(cmd0.NPU_SET_OFM_BLK_HEIGHT_M1, block_config[0] - 1)
            emit.cmd0_with_param(cmd0.NPU_SET_OFM_BLK_WIDTH_M1, block_config[1] - 1)
            emit.cmd0_with_param(cmd0.NPU_SET_OFM_BLK_DEPTH_M1, block_config[3] - 1)

            shared_buffer = ps.shared_buffer

            if npu_block_type == NpuBlockType.ElementWise:
                ifm2_broadcast = 0

                if cmd.ifm2_tensor and not ifm_ifm2_correct_order(cmd.ifm_tensor.shape, cmd.ifm2_tensor.shape):
                    # The scalar has to be the ifm2 tensor so switch the ifms
                    cmd.ifm_tensor, cmd.ifm2_tensor = cmd.ifm2_tensor, cmd.ifm_tensor
                    cmd.ifm_box, cmd.ifm2_box = cmd.ifm2_box, cmd.ifm_box

                    # Set ReverseOperandOrder bit to IFM2_BROADCAST
                    ifm2_broadcast |= IFM2Broadcast.ReverseOperandOrder

                # Calculate scales needed for arithmetic elementwise operators
                if primary_op.type in set((Op.Add, Op.Mul, Op.Sub,)):
                    input_scale = cmd.ifm_tensor.quantization.scale_f32 if cmd.ifm_tensor.quantization else None
                    input2_scale = cmd.ifm2_tensor.quantization.scale_f32 if cmd.ifm2_tensor.quantization else None
                    output_scale = ofm_quant.scale_f32 if ofm_quant else None
                    use_global_scale = True

                    if output_scale is not None and faf in (Op.Sigmoid, Op.Tanh):
                        output_scale = 1 / 0x3000

                    if primary_op.type == Op.Mul:
                        if None in (input_scale, input2_scale, output_scale):
                            ofm_scale = 1
                            shift = 0
                        else:
                            ofm_scale, shift = scaling.elementwise_mul_scale(input_scale, input2_scale, output_scale)
                        emit.cmd1_with_offset(cmd1.NPU_SET_OFM_SCALE, ofm_scale, shift)
                    else:  # AddAct/SubAct
                        # Force output scale same as the input scale for
                        # resizebilinear 1x1 that is converted to add
                        if "resizebilinear" in primary_op.attrs:
                            output_scale = input2_scale

                        if None in (input_scale, input2_scale, output_scale):
                            opa_scale = opb_scale = ofm_scale = 1
                            opa_shift = shift = 0
                            ofm_scale, shift = primary_op.attrs.get("rescale", [1, 0])
                        elif input_scale == input2_scale:
                            opa_scale, opb_scale, ofm_scale, shift = scaling.simplified_elementwise_add_sub_scale(
                                input_scale, input2_scale, output_scale
                            )
                            opa_shift = 0  # Unused for this case
                        else:
                            # Use advanced implementation only when input scales differ
                            bitdepth = cmd.ifm_tensor.dtype.bits
                            (
                                opa_scale,
                                opa_shift,
                                ofm_scale,
                                shift,
                                op_to_scale,
                            ) = scaling.advanced_elementwise_add_sub_scale(
                                input_scale, input2_scale, output_scale, bitdepth
                            )
                            opb_scale = 0  # Unused for this case
                            if ifm2_broadcast & IFM2Broadcast.ReverseOperandOrder:
                                # If the operand order is reversed we also have to swap which operand is scaled
                                if op_to_scale == scaling.OperandToScale.OPa:
                                    op_to_scale = scaling.OperandToScale.OPb
                                else:
                                    op_to_scale = scaling.OperandToScale.OPa

                        emit.cmd1_with_offset(cmd1.NPU_SET_OPA_SCALE, opa_scale, opa_shift)
                        emit.cmd1_with_offset(cmd1.NPU_SET_OPB_SCALE, opb_scale)
                        emit.cmd1_with_offset(cmd1.NPU_SET_OFM_SCALE, ofm_scale, shift)

                elif primary_op.type in set((Op.LeakyRelu, Op.Abs,)):
                    output_scale = ofm_quant.scale_f32
                    use_global_scale = True

                    if primary_op.type == Op.LeakyRelu:
                        output_scale = primary_op.attrs["alpha"]

                    ofm_scale, shift = scaling.quantise_scale(output_scale)
                    emit.cmd1_with_offset(cmd1.NPU_SET_OFM_SCALE, ofm_scale, shift)
                else:
                    emit.cmd1_with_offset(cmd1.NPU_SET_OFM_SCALE, 1, 0)

                # For elementwise set the required SHRAM to be equal to the total size of available SHRAM
                uses_lut = primary_op.activation_lut is not None
                shram_required = arch.available_shram_banks(uses_lut)
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_IB_END, shram_required)

                # Acc buffers not needed so set AB_START to size of SHRAM
                emit.cmd0_with_param(cmd0.NPU_SET_AB_START, shram_required)

                # Is not a unary operator
                if cmd.ifm2_tensor is not None:
                    if cmd.ifm2_tensor.shape == []:
                        # IFM2 is a constant, set UseIFM2Scalar bit to IFM2_BROADCAST
                        ifm2_broadcast |= IFM2Broadcast.UseIFM2Scalar
                    else:
                        ifm_box_shape = cmd.ifm_box.get_size_shape()
                        ifm2_box_shape = cmd.ifm2_box.get_size_shape()

                        if len(cmd.ifm_tensor.shape) > 1 and ifm_box_shape[1] != ifm2_box_shape[1]:
                            # Broadcast in 'H' dimension
                            assert cmd.ifm2_tensor.shape[1] == 1
                            ifm2_broadcast |= IFM2Broadcast.BroadcastHdim

                        if len(cmd.ifm_tensor.shape) > 2 and ifm_box_shape[2] != ifm2_box_shape[2]:
                            # Broadcast in 'W' dimension
                            assert cmd.ifm2_tensor.shape[2] == 1
                            ifm2_broadcast |= IFM2Broadcast.BroadcastWdim

                        if len(cmd.ifm_tensor.shape) > 3 and ifm_box_shape[3] != ifm2_box_shape[3]:
                            # Broadcast in 'C' dimension
                            assert cmd.ifm2_tensor.shape[3] == 1
                            ifm2_broadcast |= IFM2Broadcast.BroadcastCdim

                        # Set IFM2_IB_START to the latter half of the IB space
                        ifm_ib_start = shared_buffer.bank_locations[SharedBufferArea.IFM]
                        emit.cmd0_with_param(
                            cmd0.NPU_SET_IFM2_IB_START,
                            (shram_required - ifm_ib_start) // shared_buffer.ifm_count + ifm_ib_start,
                        )

                    emit.cmd0_with_param(cmd0.NPU_SET_IFM2_BROADCAST, ifm2_broadcast)

            else:
                emit.cmd0_with_param(
                    cmd0.NPU_SET_IFM_IB_END,
                    shared_buffer.bank_locations[SharedBufferArea.IFM]
                    + shared_buffer.banks_required[SharedBufferArea.IFM],
                )
                emit.cmd0_with_param(cmd0.NPU_SET_AB_START, shared_buffer.bank_locations[SharedBufferArea.Accumulators])

            emit.cmd0_with_param(cmd0.NPU_SET_ACC_FORMAT, acc_format_map[shared_buffer.use_accumulator_element])

            if primary_op.type == Op.ResizeBilinear:
                # perform nearest neighbor upscale
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_UPSCALE, resampling_mode.NEAREST)
            elif primary_op.type == Op.Conv2DBackpropInputSwitchedBias:
                # perform insert zero upscale
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_UPSCALE, resampling_mode.TRANSPOSE)
            else:
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_UPSCALE, resampling_mode.NONE)

            if npu_block_type in set(
                (
                    NpuBlockType.ConvolutionMxN,
                    NpuBlockType.ConvolutionDepthWise,
                    NpuBlockType.Pooling,
                    NpuBlockType.ReduceSum,
                )
            ):
                # Set up padding
                explicit_padding = list(primary_op.attrs["explicit_padding"])  # (top, left, bottom, right)

                # Check if this is for horizontal ifm streaming
                if not (cmd.is_first_h_stripe and cmd.is_last_h_stripe):
                    explicit_padding[0] = cmd.pad_top
                    explicit_padding[2] = cmd.pad_bottom

                # Indexing from end since a 1x1 Avgpool might have been added with non 4-dimensional input/output,
                # because of activation function needed to be fused.
                if cmd.ifm_box.start_coord[-2] > 0:
                    explicit_padding[1] = 0
                if cmd.ifm_box.end_coord[-2] < cmd.ifm_tensor.shape[-2]:
                    explicit_padding[3] = 0
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_PAD_TOP, explicit_padding[0])
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_PAD_LEFT, explicit_padding[1])
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_PAD_BOTTOM, explicit_padding[2])
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_PAD_RIGHT, explicit_padding[3])

                # set kernel x stride low bit
                stride = primary_op.attrs["strides"][2] - 1 & 1
                # set kernel y stride low bit
                stride |= (primary_op.attrs["strides"][1] - 1 & 1) << 1
                # set kernel x stride extension bits
                stride |= (primary_op.attrs["strides"][2] - 1 >> 1) << 6
                # set kernel y stride extension bits
                stride |= (primary_op.attrs["strides"][1] - 1 >> 1) << 9

                if npu_block_type in set((NpuBlockType.Pooling, NpuBlockType.ReduceSum)):
                    k_height, k_width = primary_op.attrs["ksize"][1:3]
                    emit.cmd0_with_param(cmd0.NPU_SET_KERNEL_HEIGHT_M1, k_height - 1)
                    emit.cmd0_with_param(cmd0.NPU_SET_KERNEL_WIDTH_M1, k_width - 1)

                    valid_padding = sum(explicit_padding) == 0

                    if primary_op.type in set((Op.AvgPool, Op.ResizeBilinear, Op.ReduceSum)) and valid_padding:
                        # For valid padding vela has to output scaling values
                        if faf == Op.Sigmoid or faf == Op.Tanh:
                            rescale = 0x3000 * cmd.ifm_tensor.quantization.scale_f32
                            if cmd.ifm_tensor.dtype == DataType.int16:
                                # Calculate scale and shift for the output scale of 1/(3*4096)
                                shift = 0
                                max_rescale = np.iinfo(np.int16).max / 2
                                while rescale <= max_rescale and shift <= 30:
                                    shift += 1
                                    rescale *= 2
                                scale = int(rescale)
                            else:
                                rescale_bits = len(bin(round_up_to_int(rescale))) - 2 + 1
                                scale, shift = scaling.quantise_pooling_scale(k_height * k_width, rescale_bits)
                                scale = int(round_away_zero(scale * rescale))
                        elif fused_quantize:
                            # Quantize op requires different scaling
                            ifm_scale_f64 = np.double(cmd.ifm_tensor.quantization.scale_f32)
                            ofm_scale_f64 = np.double(ofm_quant.scale_f32)
                            scale, shift = scaling.quantise_scale(ifm_scale_f64 / ofm_scale_f64)
                        elif primary_op.type == Op.ResizeBilinear and "rescale" in primary_op.attrs:
                            rescale = primary_op.attrs["rescale"]
                            rescale_bits = len(bin(round_up_to_int(rescale))) - 2 + 1
                            scale, shift = scaling.quantise_pooling_scale(k_height * k_width, rescale_bits)
                            scale = int(round_away_zero(scale * rescale))
                        else:
                            # In case avg pool fused with concat or other memory operation, rescaling might be needed.
                            # k_height == k_width == 1 is allways true in this case
                            # Normally the scale is maximised, to get maximum precision, which means that
                            # if rescale != 1, scale need to consider the number of bits needed for rescaling
                            if None not in (ofm_quant.scale_f32, cmd.ifm_tensor.quantization.scale_f32,):
                                rescale = cmd.ifm_tensor.quantization.scale_f32 / ofm_quant.scale_f32
                                rescale_bits = 0
                                if k_height == k_width == 1:
                                    if fmf == Op.ConcatSliceWrite:
                                        rounding_mode = rounding.NATURAL
                                    if rescale > 1:
                                        rescale_bits = len(bin(round_up_to_int(rescale))) - 2 + 1
                                    elif rescale < 1:
                                        rescale_bits = -(len(bin(round_up_to_int(1 / rescale))) - 2 - 1)
                                scale, shift = scaling.quantise_pooling_scale(k_height * k_width, rescale_bits)
                                scale = int(round_away_zero(scale * rescale))
                            else:
                                scale = 1
                                shift = 0

                        emit.cmd1_with_offset(cmd1.NPU_SET_OFM_SCALE, scale, shift)
                        # Valid-padded average pool should use the global scale from
                        # NPU_SET_OFM_SCALE register, which is set above.
                        use_global_scale = True

                else:  # Convolution
                    assert cmd.weight_tensor.block_traversal != TensorBlockTraversal.Default
                    # Reduced precision quantization and natural rounding used for int16
                    if cmd.ifm_tensor.dtype == DataType.int16:
                        rounding_mode = rounding.NATURAL
                    stride |= (cur_kernel.dilation.y - 1) << 4
                    stride |= (cur_kernel.dilation.x - 1) << 3
                    emit.cmd0_with_param(
                        cmd0.NPU_SET_KERNEL_HEIGHT_M1, cur_kernel.dilation.y * (cmd.weight_tensor.shape[0] - 1)
                    )
                    emit.cmd0_with_param(
                        cmd0.NPU_SET_KERNEL_WIDTH_M1, cur_kernel.dilation.x * (cmd.weight_tensor.shape[1] - 1)
                    )
                    if cmd.weight_tensor.block_traversal == TensorBlockTraversal.PartKernelFirst:
                        # Part-kernel-first weight ordering
                        assert npu_block_type == NpuBlockType.ConvolutionMxN
                        stride |= 1 << 2

                emit.cmd0_with_param(cmd0.NPU_SET_KERNEL_STRIDE, stride)

            elif npu_block_type in set((NpuBlockType.VectorProduct,)):
                # Vector product is implemented using a 1x1 convolution so need
                # to setup the appropriate padding and kernel info
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_PAD_TOP, 0)
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_PAD_LEFT, 0)
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_PAD_BOTTOM, 0)
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_PAD_RIGHT, 0)

                # kernel stride reg = 0 means stride(1,1) + depth first weight
                # order + dilation(0,0) + kernel_split_size=8
                emit.cmd0_with_param(cmd0.NPU_SET_KERNEL_STRIDE, 0)

                emit.cmd0_with_param(cmd0.NPU_SET_KERNEL_HEIGHT_M1, 0)
                emit.cmd0_with_param(cmd0.NPU_SET_KERNEL_WIDTH_M1, 0)

            if npu_block_type in set(
                (NpuBlockType.ConvolutionMxN, NpuBlockType.ConvolutionDepthWise, NpuBlockType.VectorProduct)
            ):
                # Emit Weight base address commands, only maps the area required for
                # this command's weights from the larger tensor.
                stream_index = cmd.weight_tensor.compressed_stream_index_from_coord(cmd.weight_box.start_coord)
                weight_substream_offsets = cmd.weight_tensor.compressed_values_substream_offsets[stream_index]
                substreams = len(weight_substream_offsets) - 1  # Offset list must terminate with full stream length

                # Extract weight substream offsets and calculate their lengths
                assert len(weight_substream_offsets) > 1 and (weight_substream_offsets[0] == 0)
                weight_addr = cmd.weight_tensor.address_for_coordinate(cmd.weight_box.start_coord)

                # Set weights sources for active and present cores
                for core, param in enumerate(
                    [
                        (cmd1.NPU_SET_WEIGHT_BASE, cmd1.NPU_SET_WEIGHT_LENGTH),
                        (cmd1.NPU_SET_WEIGHT1_BASE, cmd1.NPU_SET_WEIGHT1_LENGTH),
                    ]
                ):
                    if core < substreams:
                        emit.cmd1_with_offset(param[0], weight_addr + weight_substream_offsets[core])
                        emit.cmd1_with_offset(
                            param[1], weight_substream_offsets[core + 1] - weight_substream_offsets[core]
                        )
                    elif core < arch.ncores:
                        emit.cmd1_with_offset(param[0], weight_addr)
                        emit.cmd1_with_offset(param[1], 0)

                weight_region = base_ptr_idx_map[cmd.weight_tensor.mem_type]
                emit.cmd0_with_param(cmd0.NPU_SET_WEIGHT_REGION, weight_region)

                # Emit Scale & Bias base address commands, with length matching the amount required by
                # the weight tensors.
                if cmd.scale_tensor is not None:
                    scale_substream_offsets = cmd.scale_tensor.compressed_values_substream_offsets[stream_index]
                    substreams = len(scale_substream_offsets) - 1  # Offset list must terminate with full stream length

                    # Extract scale substream offsets and calculate their lengths
                    assert len(scale_substream_offsets) > 1 and (scale_substream_offsets[0] == 0)
                    scale_addr = cmd.scale_tensor.address_for_coordinate(cmd.weight_box.start_coord[-1:])

                    # Set scale sources for active and present cores
                    for core, param in enumerate(
                        [
                            (cmd1.NPU_SET_SCALE_BASE, cmd1.NPU_SET_SCALE_LENGTH),
                            (cmd1.NPU_SET_SCALE1_BASE, cmd1.NPU_SET_SCALE1_LENGTH),
                        ]
                    ):
                        if core < substreams:
                            emit.cmd1_with_offset(param[0], scale_addr + scale_substream_offsets[core])
                            emit.cmd1_with_offset(
                                param[1], scale_substream_offsets[core + 1] - scale_substream_offsets[core]
                            )
                        elif core < arch.ncores:
                            emit.cmd1_with_offset(param[0], scale_addr)
                            emit.cmd1_with_offset(param[1], 0)

                    # Emit base address for NPU to access scale & bias data
                    scale_region = base_ptr_idx_map[cmd.scale_tensor.mem_type]
                    emit.cmd0_with_param(cmd0.NPU_SET_SCALE_REGION, scale_region)

            ofm_quant_qmin = ofm_quant.quant_min if ofm_quant else np.iinfo(np.int16).min
            ofm_quant_qmax = ofm_quant.quant_max if ofm_quant else np.iinfo(np.int16).max
            ifm_min = cmd.ifm_tensor.quantization.min if cmd.ifm_tensor.quantization else np.iinfo(np.int16).min
            ifm_max = cmd.ifm_tensor.quantization.max if cmd.ifm_tensor.quantization else np.iinfo(np.int16).max

            # Emit commands for any fused activation function
            if faf is None:
                emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION, activation.NONE)
                # Even if no activation function, values need to be set to override previous values
                faf_min = ofm_quant_qmin
                faf_max = ofm_quant_qmax
            elif faf == Op.Relu:
                emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION, activation.NONE)
                faf_min = quantise_float32(0.0, ofm_quant.scale_f32, ofm_quant.zero_point)
                faf_max = ofm_quant_qmax
            elif faf == Op.Relu6:
                emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION, activation.NONE)
                faf_min = quantise_float32(0.0, ofm_quant.scale_f32, ofm_quant.zero_point)
                faf_max = quantise_float32(6.0, ofm_quant.scale_f32, ofm_quant.zero_point)
            elif faf == Op.ReluN1To1:
                emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION, activation.NONE)
                faf_min = quantise_float32(-1.0, ofm_quant.scale_f32, ofm_quant.zero_point)
                faf_max = quantise_float32(1.0, ofm_quant.scale_f32, ofm_quant.zero_point)
            elif faf == Op.Tanh:
                emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION, activation.TANH)
                if primary_op.type in set((Op.AvgPool, Op.ResizeBilinear)):
                    faf_min = quantise_float32(-1.0, ofm_quant.scale_f32, ofm_quant.zero_point)
                    faf_max = quantise_float32(1.0, ofm_quant.scale_f32, ofm_quant.zero_point)
                else:
                    faf_min = quantise_float32(clamp_tanh(ifm_min), ofm_quant.scale_f32, ofm_quant.zero_point)
                    faf_max = quantise_float32(clamp_tanh(ifm_max), ofm_quant.scale_f32, ofm_quant.zero_point)
            elif faf == Op.Sigmoid:
                emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION, activation.SIGMOID)
                if primary_op.type in set((Op.AvgPool, Op.ResizeBilinear)):
                    faf_min = quantise_float32(0, ofm_quant.scale_f32, ofm_quant.zero_point)
                    faf_max = quantise_float32(1.0, ofm_quant.scale_f32, ofm_quant.zero_point)
                else:
                    faf_min = quantise_float32(clamp_sigmoid(ifm_min), ofm_quant.scale_f32, ofm_quant.zero_point)
                    faf_max = quantise_float32(clamp_sigmoid(ifm_max), ofm_quant.scale_f32, ofm_quant.zero_point)
            elif faf == Op.LUT:
                lut_index = int(activation.LUT_START.value) + primary_op.attrs.get("lut_index", -1)
                assert activation.LUT_START.value <= lut_index <= activation.LUT_END.value, "LUT index out of range."
                if cmd.ofm_tensor.dtype == DataType.int32:
                    lut_index |= 3 << 12  # Force I8 range
                emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION, lut_index)
                faf_min = ofm_quant_qmin
                faf_max = ofm_quant_qmax
            else:
                raise Exception("Unsupported fused_activation_function = " + faf.name)

            # Activation range needs to be set based upon the quantisation range and the fused activation range
            emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION_MIN, max(ofm_quant_qmin, faf_min))
            emit.cmd0_with_param(cmd0.NPU_SET_ACTIVATION_MAX, min(ofm_quant_qmax, faf_max))

            out_shape = cmd.ofm_box.get_size_shape()
            if len(out_shape) >= 4:
                emit.cmd0_with_param(cmd0.NPU_SET_OFM_HEIGHT_M1, out_shape[-3] - 1)
            else:
                emit.cmd0_with_param(cmd0.NPU_SET_OFM_HEIGHT_M1, 0)
            if len(out_shape) >= 2:
                emit.cmd0_with_param(cmd0.NPU_SET_OFM_WIDTH_M1, out_shape[-2] - 1)
            else:
                emit.cmd0_with_param(cmd0.NPU_SET_OFM_WIDTH_M1, 0)
            emit.cmd0_with_param(cmd0.NPU_SET_OFM_DEPTH_M1, out_shape[-1] - 1)

            if npu_block_type in set((NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct, NpuBlockType.ReduceSum)):
                in_shape = cmd.ifm_box.get_size_shape()
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_DEPTH_M1, in_shape[-1] - 1)
            else:
                emit.cmd0_with_param(cmd0.NPU_SET_IFM_DEPTH_M1, out_shape[-1] - 1)

            for tens, box, region_op, ptr_ops, stride_ops, zero_point_op in (
                (
                    cmd.ifm_tensor,
                    cmd.ifm_box,
                    cmd0.NPU_SET_IFM_REGION,
                    (cmd1.NPU_SET_IFM_BASE0, cmd1.NPU_SET_IFM_BASE1, cmd1.NPU_SET_IFM_BASE2, cmd1.NPU_SET_IFM_BASE3),
                    (cmd1.NPU_SET_IFM_STRIDE_C, cmd1.NPU_SET_IFM_STRIDE_Y, cmd1.NPU_SET_IFM_STRIDE_X),
                    cmd0.NPU_SET_IFM_ZERO_POINT,
                ),
                (
                    cmd.ifm2_tensor,
                    cmd.ifm2_box,
                    cmd0.NPU_SET_IFM2_REGION,
                    (
                        cmd1.NPU_SET_IFM2_BASE0,
                        cmd1.NPU_SET_IFM2_BASE1,
                        cmd1.NPU_SET_IFM2_BASE2,
                        cmd1.NPU_SET_IFM2_BASE3,
                    ),
                    (cmd1.NPU_SET_IFM2_STRIDE_C, cmd1.NPU_SET_IFM2_STRIDE_Y, cmd1.NPU_SET_IFM2_STRIDE_X),
                    cmd0.NPU_SET_IFM2_ZERO_POINT,
                ),
                (
                    cmd.ofm_tensor,
                    cmd.ofm_box,
                    cmd0.NPU_SET_OFM_REGION,
                    (cmd1.NPU_SET_OFM_BASE0, cmd1.NPU_SET_OFM_BASE1, cmd1.NPU_SET_OFM_BASE2, cmd1.NPU_SET_OFM_BASE3),
                    (cmd1.NPU_SET_OFM_STRIDE_C, cmd1.NPU_SET_OFM_STRIDE_Y, cmd1.NPU_SET_OFM_STRIDE_X),
                    cmd0.NPU_SET_OFM_ZERO_POINT,
                ),
            ):

                if tens is None:
                    continue

                need_zero_point = (
                    (faf is not None and forced_ofm_quantization is None)
                    or (fmf == Op.ConcatSliceWrite)
                    or fused_quantize
                )
                if (
                    (primary_op.type in set((Op.AvgPool, Op.ResizeBilinear, Op.CLZ, Op.SHL)) and not need_zero_point)
                    or (
                        tens.dtype == DataType.int32
                        and zero_point_op in (cmd0.NPU_SET_IFM_ZERO_POINT, cmd0.NPU_SET_IFM2_ZERO_POINT)
                    )
                    or tens.quantization is None
                ):
                    # Actual integer operation, just set scale to 1 and zero point to 0
                    emit.cmd0_with_param(zero_point_op, 0)
                else:
                    assert tens.quantization.zero_point is not None, "need an actual zero point set"
                    if cmd0.NPU_SET_OFM_ZERO_POINT == zero_point_op and forced_ofm_quantization is not None:
                        zero_point = forced_ofm_quantization.zero_point
                    elif (
                        "resizebilinear" in primary_op.attrs
                        and primary_op.type == Op.Add
                        and cmd0.NPU_SET_OFM_ZERO_POINT == zero_point_op
                    ):
                        # Force output zero point same as the input zero point
                        # for resizebilinear 1x1 that is converted to add
                        zero_point = cmd.ifm2_tensor.quantization.zero_point
                    else:
                        zero_point = tens.quantization.zero_point
                    emit.cmd0_with_param(zero_point_op, int(zero_point))

                if tens.shape == []:
                    # Empty shape, elementwise constant
                    ifm2_scalar = tens.quant_values
                    assert ifm2_scalar.size == 1
                    emit.cmd0_with_param(cmd0.NPU_SET_IFM2_SCALAR, int(ifm2_scalar.item(0)))
                    continue

                height_0, height_1, width_0, addresses = tens.addresses_for_rolling_buffer(
                    box.start_coord, box.end_coord
                )
                if npu_block_type != NpuBlockType.VectorProduct:
                    if tens == cmd.ifm_tensor:
                        emit.cmd0_with_param(cmd0.NPU_SET_IFM_HEIGHT0_M1, height_0 - 1)
                        emit.cmd0_with_param(cmd0.NPU_SET_IFM_HEIGHT1_M1, height_1 - 1)
                        emit.cmd0_with_param(cmd0.NPU_SET_IFM_WIDTH0_M1, width_0 - 1)
                    elif tens == cmd.ofm_tensor:
                        emit.cmd0_with_param(cmd0.NPU_SET_OFM_HEIGHT0_M1, height_0 - 1)
                        emit.cmd0_with_param(cmd0.NPU_SET_OFM_HEIGHT1_M1, height_1 - 1)
                        emit.cmd0_with_param(cmd0.NPU_SET_OFM_WIDTH0_M1, width_0 - 1)
                    if tens == cmd.ifm2_tensor:
                        emit.cmd0_with_param(cmd0.NPU_SET_IFM2_HEIGHT0_M1, height_0 - 1)
                        emit.cmd0_with_param(cmd0.NPU_SET_IFM2_HEIGHT1_M1, height_1 - 1)
                        emit.cmd0_with_param(cmd0.NPU_SET_IFM2_WIDTH0_M1, width_0 - 1)
                else:
                    if len(out_shape) == 2:
                        assert out_shape[0] == 1
                        if tens == cmd.ifm_tensor:
                            emit.cmd0_with_param(cmd0.NPU_SET_IFM_WIDTH0_M1, 0)
                        elif tens == cmd.ofm_tensor:
                            emit.cmd0_with_param(cmd0.NPU_SET_OFM_WIDTH0_M1, 0)
                    else:
                        assert False

                emit.cmd0_with_param(region_op, base_ptr_idx_map[tens.mem_type])

                for idx, addr in enumerate(addresses):
                    if addr is None:
                        addresses[idx] = 0

                emit.cmd1_with_offset(ptr_ops[0], addresses[0])
                emit.cmd1_with_offset(ptr_ops[1], addresses[1])
                emit.cmd1_with_offset(ptr_ops[2], addresses[2])
                emit.cmd1_with_offset(ptr_ops[3], addresses[3])

                strides = tens.get_strides()
                emit.cmd1_with_offset(stride_ops[0], strides[1])  # stride between 16-byte channel blocks (C)
                emit.cmd1_with_offset(stride_ops[2], strides[3])  # stride between horisontal values (W)
                emit.cmd1_with_offset(stride_ops[1], strides[2])  # stride between vertical values (H)

                if tens.format == TensorFormat.NHCWB16:
                    # Check that all BasePointer addresses are aligned to 16 bytes
                    assert (int(addresses[0]) % 16) == 0
                    assert (int(addresses[1]) % 16) == 0
                    assert (int(addresses[2]) % 16) == 0
                    assert (int(addresses[3]) % 16) == 0

            ofm_dtype = cmd.ofm_tensor.dtype
            assert ofm_dtype.type & BaseType.Int
            prec = 0
            if ofm_dtype.size_in_bits() == 8:
                prec = 0
            elif ofm_dtype.size_in_bits() == 16:
                prec = 2
            elif ofm_dtype.size_in_bits() == 32:
                prec = 4
            else:
                assert 0

            if ofm_dtype.type & BaseType.Signed:
                prec += 1

            if use_global_scale:
                # Set global scale bit, as opposed to using per channel scale
                prec |= 1 << 8

            if cmd.ofm_tensor.format == TensorFormat.NHCWB16:
                prec |= 1 << 6

            prec |= rounding_mode.value << 14

            emit.cmd0_with_param(cmd0.NPU_SET_OFM_PRECISION, prec)

            prec = None
            weight_bits = 8
            if cmd.weight_tensor is not None:
                weight_bits = cmd.weight_tensor.dtype.size_in_bits()

            ifm_dtype = cmd.ifm_tensor.dtype

            assert weight_bits == 8, "Unsupported weight bit depth"
            assert (
                ifm_dtype.size_in_bits() in {8, 16}
                or ifm_dtype.size_in_bits() == 32
                and npu_block_type in (NpuBlockType.ElementWise, NpuBlockType.ReduceSum)
            ), "Unsupported ifm bit depth"

            if ifm_dtype.size_in_bits() == 8:
                if ifm_dtype.type & BaseType.Signed:
                    prec = ifm_precision.S8
                else:
                    prec = ifm_precision.U8
            elif ifm_dtype.size_in_bits() == 16:
                if ifm_dtype.type & BaseType.Signed:
                    prec = ifm_precision.S16
                else:
                    prec = ifm_precision.U16
            elif ifm_dtype == DataType.int32:
                prec = ifm_precision.S32

            ifm_prec = prec.value
            ifm2_prec = ifm_prec

            if cmd.ifm_tensor.format == TensorFormat.NHCWB16:
                ifm_prec |= 1 << 6

            ifm_prec |= op_to_scale << 8

            emit.cmd0_with_param(cmd0.NPU_SET_IFM_PRECISION, ifm_prec)

            if cmd.ifm2_tensor is not None:
                if cmd.ifm2_tensor.format == TensorFormat.NHCWB16:
                    ifm2_prec |= 1 << 6
                emit.cmd0_with_param(cmd0.NPU_SET_IFM2_PRECISION, ifm2_prec)

            # Get op parameters
            cur_ifm_block_depth = get_op_ifmofm_block_depth(arch, cmd)
            cur_ofm_block = Block(ps.block_config[1], ps.block_config[0], ps.block_config[3])
            cur_ofm_rect = get_op_ofm_rect(cmd)
            cur_ifm_rect = get_op_ifm_rect(cmd)
            cur_padLT = get_op_padding_lt(cmd)
            if (prev_kernel is not None) and (cur_kernel is not None) and has_prev_op_dependency(prev_cmd, cmd):
                if cmd.ifm_tensor.shape == prev_cmd.ofm_tensor.shape:
                    blockdep = arch.calc_block_dep(
                        prev_ifm_rect,
                        prev_ofm_rect,
                        prev_ifm_block_depth,
                        prev_ofm_block,
                        prev_kernel,
                        cur_ifm_rect,
                        cur_ofm_rect,
                        cur_ifm_block_depth,
                        cur_ofm_block,
                        cur_kernel,
                        cur_padLT,
                    )
                else:
                    blockdep = 0
            else:
                blockdep = ArchitectureFeatures.MAX_BLOCKDEP

            # Set between every op (dependent or not)
            blockdep = min(blockdep, arch.max_blockdep)
            emit.cmd0_with_param(cmd0.NPU_SET_BLOCKDEP, blockdep)
            prev_cmd = cmd

            emit_cmd_waits(cmd_waits)

            if npu_block_type == NpuBlockType.ConvolutionMxN:
                emit.cmd_do_operation(cmd0.NPU_OP_CONV)
            elif npu_block_type == NpuBlockType.ConvolutionDepthWise:
                emit.cmd_do_operation(cmd0.NPU_OP_DEPTHWISE)
            elif npu_block_type == NpuBlockType.VectorProduct:
                # Vector product is implemented using a 1x1 convolution
                emit.cmd_do_operation(cmd0.NPU_OP_CONV)
            elif npu_block_type == NpuBlockType.Pooling:
                param = pooling_mode.MAX.value if primary_op.type.is_maxpool_op() else pooling_mode.AVERAGE.value
                emit.cmd_do_operation(cmd0.NPU_OP_POOL, param=param)
            elif npu_block_type == NpuBlockType.ReduceSum:
                emit.cmd_do_operation(cmd0.NPU_OP_POOL, param=pooling_mode.REDUCE_SUM.value)
            elif npu_block_type == NpuBlockType.ElementWise:
                param = elementwise_mode_map[primary_op.type]
                emit.cmd_do_operation(cmd0.NPU_OP_ELEMENTWISE, param)
            else:
                print("Warning: Skipping register command stream generation for", ps)

    # Fill in final part of command stream:
    emit.cmd_do_operation(cmd0.NPU_OP_STOP, param=0xFFFF)

    sg.register_command_stream = emit.to_list()
    if verbose:
        emit.print_cmds()
        print("number of commands", len(emit.cmd_stream))
        print("command stream length in words", len(sg.register_command_stream))