aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/high_level_command_to_npu_op.py
blob: 77501210570b23b955d53ed7745ac4743ecd0172 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Conversion from high level command to NpuOperation
from enum import IntEnum
from typing import List
from typing import Optional

from .api import NpuActivation
from .api import NpuActivationOp
from .api import NpuAddressRange
from .api import NpuBlockOperation
from .api import NpuBlockTraversal
from .api import NpuConv2DOperation
from .api import NpuConvDepthWiseOperation
from .api import NpuDataType
from .api import NpuDmaOperation
from .api import NpuElementWiseOp
from .api import NpuElementWiseOperation
from .api import NpuFeatureMap
from .api import NpuKernel
from .api import NpuLayout
from .api import NpuOperation
from .api import NpuPadding
from .api import NpuPoolingOp
from .api import NpuPoolingOperation
from .api import NpuQuantization
from .api import NpuResamplingMode
from .api import NpuRoundingMode
from .api import NpuShape3D
from .api import NpuTileBox
from .architecture_features import ArchitectureFeatures
from .data_type import DataType
from .high_level_command_stream import Box
from .high_level_command_stream import Command
from .high_level_command_stream import CommandType
from .high_level_command_stream import DMA
from .high_level_command_stream import NpuStripe
from .operation import Kernel
from .operation import NpuBlockType
from .operation import Op
from .operation import Operation
from .tensor import MemType
from .tensor import Tensor
from .tensor import TensorBlockTraversal
from .tensor import TensorFormat
from .tensor import TensorPurpose


unary_elementwise_ops = set((NpuElementWiseOp.ABS, NpuElementWiseOp.LRELU, NpuElementWiseOp.CLZ,))


class BasePointerIndex(IntEnum):
    WeightTensor = 0  # base address index for the Weight tensor
    ScratchTensor = 1  # base address index for the Scratch_tensor in the TensorArena
    ScratchFastTensor = 2  # base address for the Scratch_fast_tensor
    Mem2Mem = (1 << 8) | (3 << 0)  # base address slot for memory 2 memory transfer


dtype_map = {
    DataType.uint8: NpuDataType.UINT8,
    DataType.int8: NpuDataType.INT8,
    DataType.uint16: NpuDataType.UINT16,
    DataType.int16: NpuDataType.INT16,
    DataType.int32: NpuDataType.INT32,
}


block_traversal_map = {
    TensorBlockTraversal.DepthFirst: NpuBlockTraversal.DEPTH_FIRST,
    TensorBlockTraversal.PartKernelFirst: NpuBlockTraversal.PART_KERNEL_FIRST,
}


# Maps an elementwise op type to an elementwise_mode enum value used by NPU_OP_ELEMENTWISE
elementwise_op_map = {
    Op.Mul: NpuElementWiseOp.MUL,
    Op.Add: NpuElementWiseOp.ADD,
    Op.Sub: NpuElementWiseOp.SUB,
    Op.Minimum: NpuElementWiseOp.MIN,
    Op.Maximum: NpuElementWiseOp.MAX,
    Op.LeakyRelu: NpuElementWiseOp.LRELU,
    Op.Abs: NpuElementWiseOp.ABS,
    Op.CLZ: NpuElementWiseOp.CLZ,
    Op.SHR: NpuElementWiseOp.SHR,
    Op.SHL: NpuElementWiseOp.SHL,
}


def to_npu_kernel(kernel: Kernel) -> NpuKernel:
    """Converts the given internally used kernel object to NpuKernel (of public API)"""
    return NpuKernel(
        kernel.width, kernel.height, kernel.stride.x, kernel.stride.y, kernel.dilation.x, kernel.dilation.y
    )


def to_kernel(kernel: Optional[NpuKernel]) -> Kernel:
    """Converts the given public API object to Kernel (used internally)"""
    if kernel is None:
        return Kernel(1, 1)
    return Kernel(kernel.width, kernel.height, kernel.stride_x, kernel.stride_y, kernel.dilation_x, kernel.dilation_y)


def ifm_ifm2_correct_order(ifm_shape: List[int], ifm2_shape: List[int]) -> bool:
    if ifm_shape == []:
        # Scalar needs to be in IFM2
        return False
    if ifm2_shape == []:
        return True

    for ifm, ifm2 in zip(ifm_shape, ifm2_shape):
        if ifm != ifm2 and ifm == 1:
            # Broadcasted FM needs to be in IFM2
            return False
    return True


def get_rounding_mode(op: Operation) -> NpuRoundingMode:
    """Specifies type of rounding to be used"""
    rounding_mode = NpuRoundingMode.TFL
    if op.type == Op.ResizeBilinear:
        rounding_mode = NpuRoundingMode.TRUNCATE
    elif (
        op.type.npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.ConvolutionDepthWise)
        and op.ifm.dtype == DataType.int16
    ):
        rounding_mode = NpuRoundingMode.NATURAL
    elif op.type.is_avgpool_op() and op.memory_function == Op.ConcatSliceWrite and op.kernel.elements_wh() == 1:
        rounding_mode = NpuRoundingMode.NATURAL
    rounding_mode = op.attrs.get("rounding_mode", rounding_mode)
    return rounding_mode


def create_padding(cmd: NpuStripe, primary_op: Operation) -> NpuPadding:
    if primary_op.type.npu_block_type == NpuBlockType.VectorProduct:
        return NpuPadding(top=0, left=0, bottom=0, right=0)
    explicit_padding = list(primary_op.attrs["explicit_padding"])  # (top, left, bottom, right)

    # Check if this is for horizontal ifm streaming
    if not (cmd.is_first_h_stripe and cmd.is_last_h_stripe):
        explicit_padding[0] = cmd.pad_top
        explicit_padding[2] = cmd.pad_bottom

    # Indexing from end since a 1x1 Avgpool might have been added with non 4-dimensional input/output,
    # because of activation function needed to be fused.
    if cmd.ifm_box.start_coord[-2] > 0:
        explicit_padding[1] = 0
    if cmd.ifm_box.end_coord[-2] < cmd.ifm_tensor.shape[-2]:
        explicit_padding[3] = 0
    return NpuPadding(
        top=explicit_padding[0], left=explicit_padding[1], bottom=explicit_padding[2], right=explicit_padding[3]
    )


def get_region(tens: Tensor, arch: ArchitectureFeatures) -> int:
    if arch.feature_map_storage_mem_area == arch.fast_storage_mem_area:
        base_ptr_idx_map = {
            MemType.Permanent_NPU: BasePointerIndex.WeightTensor,
            MemType.Permanent_CPU: BasePointerIndex.WeightTensor,
            MemType.Scratch: BasePointerIndex.ScratchTensor,
            MemType.Scratch_fast: BasePointerIndex.ScratchTensor,
        }
    else:
        base_ptr_idx_map = {
            MemType.Permanent_NPU: BasePointerIndex.WeightTensor,
            MemType.Permanent_CPU: BasePointerIndex.WeightTensor,
            MemType.Scratch: BasePointerIndex.ScratchTensor,
            MemType.Scratch_fast: BasePointerIndex.ScratchFastTensor,
        }
    return int(base_ptr_idx_map[tens.mem_type])


def get_upscale(op: Operation) -> NpuResamplingMode:
    upscale = NpuResamplingMode.NONE
    if op.type == Op.ResizeBilinear:
        # perform nearest neighbor upscale
        upscale = NpuResamplingMode.NEAREST
    elif op.type == Op.Conv2DBackpropInputSwitchedBias:
        # perform insert zero upscale
        upscale = NpuResamplingMode.TRANSPOSE
    return upscale


def get_ifm_depth(npu_block_type: NpuBlockType, ifm_box: Box, ofm_box: Box) -> int:
    if npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct, NpuBlockType.ReduceSum):
        shape = ifm_box.get_size_shape()
    else:
        shape = ofm_box.get_size_shape()
    return shape[-1]


def use_zero_point_0(ps, tens: Tensor, is_ifm_tensor: bool) -> bool:
    """Checks if quantization should use 0 as zero point"""
    if tens.dtype == DataType.int32 and is_ifm_tensor:
        return True
    if ps.primary_op.type not in (Op.AvgPool, Op.ResizeBilinear, Op.CLZ, Op.SHL):
        return False
    fused_quantize = any(op.type == Op.Quantize for op in ps.ops)
    forced_ofm_quantization = ps.primary_op.forced_output_quantization
    use_0 = (
        (ps.primary_op.activation is None or forced_ofm_quantization is not None)
        and (ps.primary_op.memory_function != Op.ConcatSliceWrite)
        and not fused_quantize
    )
    return use_0


def get_ifm_or_ifm2_quantization(ps, tens: Tensor) -> Optional[NpuQuantization]:
    """Gets quantization for IFM/IFM2"""
    if tens.quantization is None:
        return None
    if use_zero_point_0(ps, tens, True):
        zero_point = 0
    else:
        zero_point = int(tens.quantization.zero_point)
    return NpuQuantization(scale_f32=tens.quantization.scale_f32, zero_point=zero_point)


def get_ofm_quantization(ps, tens: Tensor) -> Optional[NpuQuantization]:
    """Gets quantization for OFM"""
    op = ps.primary_op
    # Check if operation's output quantization is should be used instead of the output tensor's quantization
    # (used in LUTs)
    ofm_quant = op.forced_output_quantization if op.forced_output_quantization is not None else tens.quantization
    if ofm_quant is None:
        return None
    if use_zero_point_0(ps, tens, False):
        zero_point = 0
    else:
        zero_point = int(ofm_quant.zero_point)
    return NpuQuantization(scale_f32=ofm_quant.scale_f32, zero_point=zero_point)


def create_feature_map(tens: Tensor, box: Box, arch: ArchitectureFeatures) -> NpuFeatureMap:
    """Creates feature map with common fields populated"""
    fm = NpuFeatureMap()
    fm.region = get_region(tens, arch)
    fm.data_type = dtype_map[tens.dtype]
    if tens.format == TensorFormat.NHWC:
        fm.layout = NpuLayout.NHWC
    elif tens.format == TensorFormat.NHCWB16:
        fm.layout = NpuLayout.NHCWB16
    else:
        assert 0, "Incorrect tensor format"
    height_0, height_1, width_0, addresses = tens.addresses_for_rolling_buffer(box.start_coord, box.end_coord)
    for idx, addr in enumerate(addresses):
        if addr is None:
            addresses[idx] = 0
    fm.tiles = NpuTileBox(
        height_0=height_0, height_1=height_1, width_0=width_0, addresses=[int(addr) for addr in addresses]
    )
    strides = tens.get_strides()
    fm.strides = NpuShape3D(height=int(strides[2]), width=int(strides[3]), depth=int(strides[1]))
    return fm


def create_weights(weight_tensor: Tensor, weight_box: Box, arch: ArchitectureFeatures) -> List[NpuAddressRange]:
    """Returns address ranges for weights"""
    weights = []
    stream_index = weight_tensor.compressed_stream_index_from_coord(weight_box.start_coord)
    weight_substream_offsets = weight_tensor.compressed_values_substream_offsets[stream_index]
    substreams = len(weight_substream_offsets) - 1  # Offset list must terminate with full stream length

    # Extract weight substream offsets and calculate their lengths
    assert len(weight_substream_offsets) > 1 and (weight_substream_offsets[0] == 0)
    weight_addr = weight_tensor.address_for_coordinate(weight_box.start_coord)
    region = get_region(weight_tensor, arch)
    for core in range(substreams):
        address = weight_addr + weight_substream_offsets[core]
        length = weight_substream_offsets[core + 1] - weight_substream_offsets[core]
        addr_range = NpuAddressRange(region, int(address), int(length))
        weights.append(addr_range)
    return weights


def create_biases(
    weight_tensor: Tensor, scale_tensor: Tensor, weight_box: Box, arch: ArchitectureFeatures
) -> List[NpuAddressRange]:
    """Returns address ranges for biases"""
    biases = []
    stream_index = weight_tensor.compressed_stream_index_from_coord(weight_box.start_coord)
    scale_substream_offsets = scale_tensor.compressed_values_substream_offsets[stream_index]
    substreams = len(scale_substream_offsets) - 1  # Offset list must terminate with full stream length

    # Extract scale substream offsets and calculate their lengths
    assert len(scale_substream_offsets) > 1 and (scale_substream_offsets[0] == 0)
    scale_addr = scale_tensor.address_for_coordinate(weight_box.start_coord[-1:])

    region = get_region(scale_tensor, arch)
    for core in range(substreams):
        address = scale_addr + scale_substream_offsets[core]
        length = scale_substream_offsets[core + 1] - scale_substream_offsets[core]
        addr_range = NpuAddressRange(region, int(address), int(length))
        biases.append(addr_range)
    return biases


def create_npu_activation(op: Operation) -> NpuActivation:
    """Creates fused activation function"""
    if op.activation is None:
        return NpuActivation(NpuActivationOp.NONE_OR_RELU)
    faf = op.activation.op_type
    act_op = NpuActivationOp.NONE_OR_RELU
    if faf == Op.Tanh:
        act_op = NpuActivationOp.TANH
    elif faf == Op.Sigmoid:
        act_op = NpuActivationOp.SIGMOID
    elif faf == Op.LUT:
        act_op = NpuActivationOp.TABLE_LOOKUP
    elif not faf.is_relu_op():
        raise Exception("Unsupported fused_activation_function = " + faf.name)

    act = NpuActivation(act_op)
    act.min = op.activation.min
    act.max = op.activation.max
    act.lookup_table_index = op.activation.lut_index
    return act


def set_common_op_fields(npu_op: NpuBlockOperation, cmd: NpuStripe, arch: ArchitectureFeatures):
    """Sets common fields of the given operation"""
    ps = cmd.ps
    op = ps.primary_op
    in_shape = cmd.ifm_box.get_size_shape()
    out_shape = cmd.ofm_box.get_size_shape()
    ofm_height = out_shape[-3] if len(out_shape) >= 4 else 1
    ofm_width = out_shape[-2] if len(out_shape) >= 2 else 1
    ofm_depth = out_shape[-1] if len(out_shape) >= 1 else 1
    ifm_height = in_shape[-3] if len(in_shape) >= 4 else 1
    if op.type.npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct, NpuBlockType.ReduceSum):
        ifm_depth = in_shape[-1] if len(in_shape) >= 1 else 1
    else:
        ifm_depth = ofm_depth

    npu_op.ifm = create_feature_map(cmd.ifm_tensor, cmd.ifm_box, arch)
    npu_op.ifm.shape = NpuShape3D(height=ifm_height, width=cmd.ifm_tensor.shape[-2], depth=ifm_depth)
    npu_op.ifm.quantization = get_ifm_or_ifm2_quantization(ps, cmd.ifm_tensor)
    npu_op.ofm = create_feature_map(cmd.ofm_tensor, cmd.ofm_box, arch)
    npu_op.ofm.shape = NpuShape3D(height=ofm_height, width=ofm_width, depth=ofm_depth)
    npu_op.ofm.quantization = get_ofm_quantization(ps, cmd.ofm_tensor)

    if cmd.weight_tensor is not None:
        npu_op.weights = create_weights(cmd.weight_tensor, cmd.weight_box, arch)
        if cmd.scale_tensor is not None:
            npu_op.biases = create_biases(cmd.weight_tensor, cmd.scale_tensor, cmd.weight_box, arch)
    npu_op.activation = create_npu_activation(op)
    npu_op.rounding_mode = get_rounding_mode(op)
    npu_op.block_config = NpuShape3D(height=ps.block_config[0], width=ps.block_config[1], depth=ps.block_config[3])

    if not op.type.is_elementwise_op():
        npu_op.padding = create_padding(cmd, op)
        npu_op.kernel = to_npu_kernel(op.kernel)
    npu_op.ifm_upscale = get_upscale(op)
    npu_op.fused_quantize = any(op.type == Op.Quantize for op in ps.ops)
    return npu_op


def create_npu_conv2d_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuConv2DOperation:
    """Converts the command to NpuConv2DOperation"""
    npu_op = NpuConv2DOperation()
    set_common_op_fields(npu_op, cmd, arch)
    if cmd.ps.primary_op.type.npu_block_type == NpuBlockType.VectorProduct:
        npu_op.block_traversal = NpuBlockTraversal.DEPTH_FIRST
    else:
        npu_op.block_traversal = block_traversal_map[cmd.weight_tensor.block_traversal]
    return npu_op


def create_npu_conv_depthwise_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuConvDepthWiseOperation:
    """Converts the command to NpuConvDepthWiseOperation"""
    npu_op = NpuConvDepthWiseOperation()
    set_common_op_fields(npu_op, cmd, arch)
    return npu_op


def create_npu_pool_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuPoolingOperation:
    """Converts the command to NpuPoolingOperation"""
    ps = cmd.ps
    op = ps.primary_op
    pool_op = NpuPoolingOp.AVERAGE
    if op.type.is_maxpool_op():
        pool_op = NpuPoolingOp.MAX
    elif op.type.is_avgpool_op() or op.type == Op.ResizeBilinear:
        pool_op = NpuPoolingOp.AVERAGE
    elif op.type == Op.ReduceSum:
        pool_op = NpuPoolingOp.REDUCE_SUM
    else:
        assert 0, f"Unknown pool type {op.type}"
    npu_op = NpuPoolingOperation(pool_op)
    set_common_op_fields(npu_op, cmd, arch)
    # Pooling specific info
    if op.type == Op.ResizeBilinear and "rescale" in op.attrs:
        npu_op.rescale = op.attrs["rescale"]
    return npu_op


def create_npu_elementwise_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuElementWiseOperation:
    """Converts the command to NpuElementWiseOperation"""
    ps = cmd.ps
    op = ps.primary_op
    assert op.type in elementwise_op_map, f"Unknown elementwise type {op.type}"
    elemwise_op = elementwise_op_map[op.type]
    npu_op = NpuElementWiseOperation(elemwise_op)
    if elemwise_op not in unary_elementwise_ops:
        if not ifm_ifm2_correct_order(cmd.ifm_tensor.shape, cmd.ifm2_tensor.shape):
            # The scalar/broadcasted feature map has to be the ifm2 tensor so switch the ifms
            cmd.ifm_tensor, cmd.ifm2_tensor = cmd.ifm2_tensor, cmd.ifm_tensor
            cmd.ifm_box, cmd.ifm2_box = cmd.ifm2_box, cmd.ifm_box
            npu_op.reversed_operands = True
        npu_op.ifm2 = create_feature_map(cmd.ifm2_tensor, cmd.ifm2_box, arch)
        npu_op.ifm2.quantization = get_ifm_or_ifm2_quantization(ps, cmd.ifm2_tensor)
        if cmd.ifm2_tensor.shape == []:
            # scalar
            assert cmd.ifm2_tensor.quant_values.size == 1
            npu_op.ifm2_scalar = cmd.ifm2_tensor.values.item(0)
            npu_op.ifm2.shape = NpuShape3D(height=0, width=0, depth=0)
        else:
            box_shp = cmd.ifm2_box.get_size_shape()
            height = box_shp[-3] if len(box_shp) >= 3 else 1
            npu_op.ifm2.shape = NpuShape3D(height=height, width=cmd.ifm2_tensor.shape[-2], depth=box_shp[-1])
    set_common_op_fields(npu_op, cmd, arch)
    # Check if output scale needs to be overridden
    output_scale = None
    if op.type == Op.Add and "resizebilinear" in op.attrs:
        # Force output scale same as the input scale for
        # resizebilinear 1x1 that is converted to add
        output_scale = npu_op.ifm2.quantization.scale_f32
    if op.type == Op.LeakyRelu:
        output_scale = op.attrs["alpha"]
    if op.type in (Op.Add, Op.Sub) and "rescale" in op.attrs:
        npu_op.rescale = op.attrs.get("rescale")
    if op.type in (Op.Add, Op.Mul, Op.Sub):
        if op.activation is not None and op.activation.op_type in (Op.Sigmoid, Op.Tanh):
            output_scale = 1 / 0x3000
    if output_scale is not None:
        npu_op.ofm.quantization = NpuQuantization(scale_f32=output_scale, zero_point=npu_op.ofm.quantization.zero_point)
    return npu_op


def create_dma_op(cmd: DMA, arch: ArchitectureFeatures) -> NpuDmaOperation:
    """Converts the command to NpuDmaOperation"""
    src_region = get_region(cmd.in_tensor, arch)
    if cmd.out_tensor.purpose == TensorPurpose.LUT:
        dest_region = BasePointerIndex.Mem2Mem
    else:
        dest_region = get_region(cmd.out_tensor, arch)

    start_coord = cmd.box.start_coord
    src_addr = cmd.in_tensor.address_for_coordinate(start_coord)
    dest_addr = cmd.out_tensor.address_for_coordinate(start_coord)

    if cmd.in_tensor.compressed_values is not None:
        if cmd.out_tensor.purpose == TensorPurpose.FSBias:
            sz = cmd.in_tensor.storage_size()
        else:
            stream_index = cmd.in_tensor.compressed_stream_index_from_coord(start_coord)
            sz = cmd.in_tensor.size_of_compressed_stream(stream_index)
    else:
        sz = cmd.in_tensor.address_for_coordinate(cmd.box.end_coord, is_top_box=True) - src_addr
    src = NpuAddressRange(src_region, int(src_addr), int(sz))
    dest = NpuAddressRange(dest_region, int(dest_addr), int(sz))
    return NpuDmaOperation(src, dest)


def convert_command_to_npu_op(cmd: Command, arch: ArchitectureFeatures) -> NpuOperation:
    """Converts the high level command to NpuOperation"""
    if cmd.cmdtype == CommandType.DMA:
        npu_op = create_dma_op(cmd, arch)
    elif cmd.cmdtype == CommandType.NpuStripe:
        npu_block_type = cmd.ps.primary_op.type.npu_block_type
        if npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct):
            npu_op = create_npu_conv2d_op(cmd, arch)
        elif npu_block_type == NpuBlockType.ConvolutionDepthWise:
            npu_op = create_npu_conv_depthwise_op(cmd, arch)
        elif npu_block_type in (NpuBlockType.Pooling, NpuBlockType.ReduceSum):
            npu_op = create_npu_pool_op(cmd, arch)
        elif npu_block_type == NpuBlockType.ElementWise:
            npu_op = create_npu_elementwise_op(cmd, arch)
        else:
            assert 0, f"Unknown command type {npu_block_type}"
    # add a link to the high level command for debugging purposes
    npu_op.cmd = cmd
    return npu_op