aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/high_level_command_stream.py
blob: a5372d735330a3437d7ac9900bdff7dfbc4f9af1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Contains classes that hold commands for the high-level command stream (one command per DMA or NPU stripe).
from enum import IntEnum

import numpy as np

from .numeric_util import round_up_divide
from .operation import NpuBlockType
from .operation import Op
from .range_set import AccessDirection
from .range_set import MemoryAccessSet
from .range_set import MemoryRangeSet
from .tensor import MemArea
from .tensor import TensorPurpose


class Box:
    def __init__(self, start_coord, end_coord):
        self.start_coord = list(start_coord)
        self.end_coord = list(end_coord)
        assert len(self.start_coord) == len(end_coord)
        for i in range(len(self.start_coord)):
            assert self.start_coord[i] <= self.end_coord[i]

    def transform_with_strides_and_skirt(
        self,
        strides,
        skirt,
        ifm_shape,
        npu_block_type,
        concat_axis=0,
        concat_offset=0,
        split_offset=None,
        k_height=1,
        upscaling_factor=1,
    ):
        new_start_coord = list(self.start_coord)
        new_end_coord = list(self.end_coord)

        new_start_coord[concat_axis] -= concat_offset
        new_end_coord[concat_axis] -= concat_offset

        if split_offset is not None:
            for idx in range(len(split_offset)):
                new_start_coord[idx] += split_offset[idx]
                new_end_coord[idx] += split_offset[idx]

        if split_offset is None and npu_block_type in set(
            (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct, NpuBlockType.ReduceSum)
        ):
            # these types of operations do a "dot product" or sum over the entire IFM
            new_start_coord[-1] = 0
            new_end_coord[-1] = ifm_shape[-1]

        if npu_block_type == NpuBlockType.ElementWise and min(len(new_end_coord), len(ifm_shape)) >= 1:
            new_end_coord[-1] = min(new_end_coord[-1], ifm_shape[-1])
        if min(len(new_end_coord), len(ifm_shape)) >= 2:
            new_end_coord[-2] = min(new_end_coord[-2], ifm_shape[-2] * upscaling_factor)
        if min(len(new_end_coord), len(ifm_shape)) >= 3:
            original_end_coord = list(new_end_coord)
            new_end_coord[-3] = min(new_end_coord[-3], ifm_shape[-3] * upscaling_factor)

        pad_top = 0
        pad_bottom = 0
        if strides is not None and skirt is not None:
            if len(new_start_coord) >= 2:
                stride = strides[2]
                new_start_coord[-2] = max(new_start_coord[-2] * stride - skirt[1], 0)
                new_end_coord[-2] = min(new_end_coord[-2] * stride + skirt[3], ifm_shape[-2])

            if len(new_start_coord) >= 3:
                stride = strides[1]
                skirt_top_remainder = skirt[0] % upscaling_factor

                total_stride = stride * (new_end_coord[-3] - new_start_coord[-3] - 1)
                new_start_coord[-3] = new_start_coord[-3] * stride - skirt[0] + skirt_top_remainder

                pad_top = max(0, 0 - new_start_coord[-3]) + skirt_top_remainder
                new_start_coord[-3] = max(new_start_coord[-3], 0)

                while len(ifm_shape) < 3:
                    ifm_shape = [1] + ifm_shape

                if (new_end_coord[-3] * stride + skirt[2]) > (ifm_shape[-3] * upscaling_factor):
                    # pad_bottom is calculated based the diff between the end position of the weight kernel,
                    # after last stride and the ifm height.
                    if upscaling_factor != 1 and original_end_coord[-3] > ifm_shape[-3] * upscaling_factor:
                        # Special case for Transpose Convolution with VALID padding.
                        pad_bottom = original_end_coord[-3] - (ifm_shape[-3] * upscaling_factor)
                    else:
                        k_start = new_start_coord[-3] - pad_top
                        pad_bottom = max(0, k_start + total_stride + k_height - (ifm_shape[-3] * upscaling_factor))

                # Adjust for upscaling
                new_start_coord[-3] = max(new_start_coord[-3] // upscaling_factor, 0)
                new_end_coord[-3] = new_end_coord[-3] * stride + skirt[2] + (skirt[2] % upscaling_factor)
                new_end_coord[-3] = min(new_end_coord[-3] // upscaling_factor, ifm_shape[-3])

        return Box(new_start_coord, new_end_coord), pad_top, pad_bottom

    def make_weight_box(weight_shape, npu_block_type, oc_range_start=None, oc_range_end=None, weights_transposed=False):
        start = [0] * len(weight_shape)
        end = list(weight_shape)
        if oc_range_start is not None and oc_range_end is not None:
            if npu_block_type == NpuBlockType.ConvolutionDepthWise:
                # input range is output range divided by channel multiplier
                if weights_transposed:
                    start[-1] = oc_range_start // weight_shape[-2]
                    end[-1] = oc_range_end // weight_shape[-2]
                else:
                    start[-2] = oc_range_start // weight_shape[-1]
                    end[-2] = oc_range_end // weight_shape[-1]
            else:
                start[-1] = oc_range_start
                end[-1] = oc_range_end
        for i in range(len(end)):
            assert 0 <= start[i] < weight_shape[i]
            assert 0 < end[i] <= weight_shape[i]

        return Box(start, end)

    def get_size_shape(self):
        return [int(self.end_coord[i] - self.start_coord[i]) for i in range(len(self.end_coord))]

    def get_size(self):
        return int(np.prod(self.get_size_shape()))

    def __str__(self):
        return "<Box %s - %s>" % (self.start_coord, self.end_coord)

    __repr__ = __str__


class CommandType(IntEnum):
    NpuStripe = 0
    DMA = 1
    Size = 2


class Command:
    def get_ofm_y_range_for_pass(self, ps_requested):
        return None

    def is_npu_pass_command(self):
        return False

    def get_memory_accesses(self):
        return None

    def get_operation_count(self):
        # returns numpy array of (DPU blocks, dma_ops). Should line up with the CommandType enum
        return np.array((0, 0))


class NpuStripe(Command):
    def __init__(
        self,
        ps,
        block_config,
        is_first,
        is_last,
        is_first_h_stripe,
        is_last_h_stripe,
        ifm_tensor,
        ifm_box,
        ofm_tensor,
        ofm_box,
        weight_tensor=None,
        weight_box=None,
        scale_tensor=None,
        concat_axis=0,
        concat_offset=0,
        ifm2_tensor=None,
        ifm2_box=None,
        pad_top=0,
        pad_bottom=0,
    ):
        self.cmdtype = CommandType.NpuStripe
        self.ps = ps
        self.block_config = block_config
        self.is_first = is_first
        self.is_last = is_last
        self.is_first_h_stripe = is_first_h_stripe
        self.is_last_h_stripe = is_last_h_stripe
        self.ifm_tensor = ifm_tensor
        self.ifm_box = ifm_box
        self.ifm2_tensor = ifm2_tensor
        self.ifm2_box = ifm2_box
        self.ofm_tensor = ofm_tensor
        self.ofm_box = ofm_box
        self.weight_tensor = weight_tensor
        self.scale_tensor = scale_tensor
        self.weight_box = weight_box
        self.concat_axis = concat_axis
        self.concat_offset = concat_offset
        self.pad_top = pad_top
        self.pad_bottom = pad_bottom
        for i in range(len(self.ofm_box.end_coord)):
            assert self.ofm_box.end_coord[i] <= self.ofm_tensor.shape[i]

    def get_memory_accesses(self):
        res = MemoryAccessSet()
        if self.ifm_tensor is not None and self.ifm_tensor.shape != []:
            res.add(
                self.ifm_tensor.get_address_ranges_for_coordinates(self.ifm_box.start_coord, self.ifm_box.end_coord),
                AccessDirection.Read,
            )
        if self.ifm2_tensor is not None and self.ifm2_tensor.shape != []:
            res.add(
                self.ifm2_tensor.get_address_ranges_for_coordinates(self.ifm2_box.start_coord, self.ifm2_box.end_coord),
                AccessDirection.Read,
            )
        if self.ofm_tensor is not None:
            res.add(
                self.ofm_tensor.get_address_ranges_for_coordinates(self.ofm_box.start_coord, self.ofm_box.end_coord),
                AccessDirection.Write,
            )
        if self.weight_tensor is not None:
            res.add(
                self.weight_tensor.get_address_ranges_for_coordinates(
                    self.weight_box.start_coord, self.weight_box.end_coord
                ),
                AccessDirection.Read,
            )
        if self.scale_tensor is not None and self.scale_tensor.ops[0].type == Op.DMA:
            res.add(
                self.scale_tensor.get_address_ranges_for_coordinates([0], self.scale_tensor.shape),
                AccessDirection.Read,
            )
        # Add read access to SHRAM by any LUT-s
        for tens in self.ps.intermediates:
            if tens.purpose == TensorPurpose.LUT and tens.mem_area == MemArea.Shram:
                res.add(
                    MemoryRangeSet(tens.mem_area, tens.address, tens.address + tens.storage_size()),
                    AccessDirection.Read,
                )
        # Add write access to SHRAM, needed when LUTs can overwrite accumulator banks
        res.add(
            self.ps.shared_buffer.get_shram_memory_access_range(), AccessDirection.Write,
        )
        return res

    def is_npu_pass_command(self):
        return True

    def __str__(self):
        return "<NPUStripe: ps=%s, ifm_box=%s, ifm2_box=%s, ofm_box=%s, weight_box=%s, block_config=%s>" % (
            self.ps.name,
            self.ifm_box,
            self.ifm2_box,
            self.ofm_box,
            self.weight_box,
            self.block_config,
        )

    __repr__ = __str__

    def get_ofm_y_range_for_pass(self, ps_requested):
        if ps_requested != self.ps:
            return None
        if len(self.ofm_box.start_coord) >= 3:
            return (self.ofm_box.start_coord[-3], self.ofm_box.end_coord[-3])
        return None

    def get_block_dimensions(self):
        ofm_box = self.ofm_box
        block_config = self.block_config

        out_height = 1
        out_width = 1
        out_depth = ofm_box.end_coord[-1] - ofm_box.start_coord[-1]
        if len(ofm_box.end_coord) >= 4:
            out_width = ofm_box.end_coord[-2] - ofm_box.start_coord[-2]
            out_height = ofm_box.end_coord[-3] - ofm_box.start_coord[-3]

        assert out_height >= 0
        assert out_width >= 0
        assert out_depth >= 0
        return (
            round_up_divide(out_height, block_config[0]),
            round_up_divide(out_width, block_config[1]),
            round_up_divide(out_depth, block_config[3]),
        )

    def get_operation_count(self):
        # returns numpy array of (DPU blocks, dma_ops)
        return np.array((self.get_n_blocks(), 0))

    def get_n_blocks(self):
        h, w, d = self.get_block_dimensions()
        res = h * w * d
        assert res >= 0
        return res

    def get_single_block_command(self, block_idx):
        block_cfg = (self.block_config[0], self.block_config[1], self.block_config[3])
        dims = self.get_block_dimensions()
        strides = dims[1] * dims[2], dims[2], 1
        coord = []
        idx_left = block_idx
        for s in strides:
            c = idx_left // s
            idx_left -= c * s
            coord.append(c)

        assert idx_left == 0

        # put in dummy height/widths in case we're dealing with FC layers
        ofm_start = list(self.ofm_box.start_coord)
        ofm_end = list(self.ofm_box.end_coord)

        # cut out a nice block shape
        for idx in (-1, -2, -3):
            if len(ofm_start) >= -idx:
                ofm_start[idx] += block_cfg[idx] * coord[idx]
                ofm_end[idx] = min(ofm_end[idx], ofm_start[idx] + block_cfg[idx])

        ps = self.ps
        strides = None
        skirt = None
        if ps.primary_op is not None:
            strides = ps.primary_op.attrs.get("strides", None)
            skirt = ps.primary_op.attrs.get("skirt", None)
        npu_block_type = ps.npu_block_type

        ofm_box = Box(ofm_start, ofm_end)
        ifm_box, _, _ = ofm_box.transform_with_strides_and_skirt(
            strides, skirt, self.ifm_tensor.shape, npu_block_type, self.concat_axis, self.concat_offset
        )

        weight_box = None
        if self.weight_tensor is not None:
            weight_oc_start = ofm_start[-1]
            weight_oc_end = ofm_end[-1]
            if self.concat_axis - len(self.weight_tensor.shape) == -1:
                weight_oc_start -= self.concat_offset
                weight_oc_end -= self.concat_offset

            weight_box = Box.make_weight_box(
                self.weight_tensor.shape,
                npu_block_type,
                weight_oc_start,
                weight_oc_end,
                self.weight_tensor.weight_transpose_depthwise,
            )

        return NpuStripe(
            self.ps,
            self.block_config,
            self.is_first,
            self.is_last,
            self.is_first_h_stripe,
            self.is_last_h_stripe,
            self.ifm_tensor,
            ifm_box,
            self.ofm_tensor,
            ofm_box,
            self.weight_tensor,
            weight_box,
            self.scale_tensor,
            self.concat_axis,
            self.concat_offset,
        )


class DMA(Command):
    def __init__(self, ps, in_tensor, out_tensor, box):
        self.cmdtype = CommandType.DMA
        self.ps = ps
        self.in_tensor = in_tensor
        self.out_tensor = out_tensor
        self.box = box

    def __str__(self):
        return "<DMA: in=%s, out=%s, box=%s>" % (self.in_tensor.name, self.out_tensor.name, self.box)

    __repr__ = __str__

    def get_memory_accesses(self):
        res = MemoryAccessSet()

        res.add(
            self.in_tensor.get_address_ranges_for_coordinates(self.box.start_coord, self.box.end_coord),
            AccessDirection.Read,
        )
        res.add(
            self.out_tensor.get_address_ranges_for_coordinates(self.box.start_coord, self.box.end_coord),
            AccessDirection.Write,
        )
        return res

    def get_operation_count(self):
        # returns numpy array of (DPU blocks, dma_ops)
        return np.array((0, 1))