aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/graph_optimiser.py
blob: f0afcf8f714b4dc0d4febd0b3c8530de2ce76967 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Description:
# Early optimisation of the network graph, using the rewrite_graph module to do the traversal of the graph. These are
# split into two parts optimise_graph_a and optimise_graph_b.

from .nn_graph import Operation, NpuBlockType, Tensor
from . import rewrite_graph
from .data_type import BaseType, DataType
import numpy as np
import math
from .numeric_util import round_up_divide

passthrough_nodes = set(("Identity",))


def remove_passthrough_tensor(tens, arch):
    if len(tens.ops) == 1 and tens.ops[0].type in passthrough_nodes:
        assert len(tens.ops[0].inputs) == 1
        tens = tens.ops[0].inputs[0]
    return tens


def rewrite_concat(tens, arch):
    if len(tens.ops) == 1 and tens.ops[0].is_concat_op():
        concat_op = tens.ops[0]
        if tens != concat_op.outputs[0]:
            return tens  # don't attempt to rewrite the min/max outputs of QuantizedConcat

        # Not supported so leave it and run on CPU
        if not concat_op.run_on_npu:
            return tens

        inputs, axis = concat_op.get_concat_inputs_axis()

        tens.ops = []
        offset = 0
        for idx, inp in enumerate(inputs):
            new_op = Operation("ConcatSliceWrite", concat_op.name + str(idx))
            new_op.inputs = [inp]
            new_op.outputs = [tens]
            new_op.attrs["concat_axis"] = axis
            new_op.attrs["concat_start"] = offset
            offset += inp.shape[axis]
            new_op.attrs["concat_end"] = offset
            new_op.run_on_npu = True
            tens.ops.append(new_op)
        assert tens.shape[axis] == offset

    return tens


def rewrite_split(tens, arch):

    if len(tens.ops) == 1 and tens.ops[0].is_split_op():
        split_op = tens.ops[0]

        # Not supported so leave it and run on CPU
        if not split_op.run_on_npu:
            return tens

        inp, outputs, axis, offset_start, offset_end = split_op.get_split_inputs_axis()

        tens.ops = []
        new_op = Operation("SplitSliceRead", split_op.name)
        new_op.inputs = [inp]
        new_op.outputs = [tens]

        # For Split the offset cannot be extracted from the tensor so it has to
        # be calculated from the index of the output tensor
        if axis != None:
            # Get the start and end of the split
            offset_start = [0] * len(tens.shape)
            offset_end = [0] * len(tens.shape)
            for out in outputs:
                if out == tens:
                    break
                offset_start[axis] += out.shape[axis]

            offset_end[axis] = offset_start[axis] + tens.shape[axis]

        new_op.attrs["split_start"] = offset_start
        new_op.attrs["split_end"] = offset_end
        new_op.run_on_npu = True
        tens.ops.append(new_op)

    return tens


def needed_total_padding(input_size, stride, filter_size):
    out_size = (input_size + stride - 1) // stride
    needed_input = (out_size - 1) * stride + filter_size
    total_padding = max(0, needed_input - input_size)
    return total_padding


def calc_padding_and_skirt(padding_type, kernel_size, stride, input_dims):
    ypad = needed_total_padding(int(input_dims[1]), int(stride[1]), int(kernel_size[0]))
    xpad = needed_total_padding(int(input_dims[2]), int(stride[2]), int(kernel_size[1]))
    if padding_type == b"SAME":
        left_pad = (xpad + 0) // 2
        right_pad = (xpad + 1) // 2
        top_pad = (ypad + 0) // 2
        bottom_pad = (ypad + 1) // 2
    elif padding_type == b"VALID":
        left_pad = 0
        right_pad = 0
        top_pad = 0
        bottom_pad = 0
    else:
        assert 0, "Unknown padding"
    padding = (top_pad, left_pad, bottom_pad, right_pad)
    skirt = (top_pad, left_pad, ypad - top_pad, xpad - left_pad)
    return padding, skirt


def fixup_conv2d_backprop(op, arch):
    if op.type == "Conv2DBackpropInput":
        # flip the inputs
        op.inputs[0], op.inputs[2] = op.inputs[2], op.inputs[0]
        op.type = "Conv2DBackpropInputSwitched"

    return op


def fixup_fully_connected_input(op, arch):
    if op.type == "FullyConnectedAct":
        inp = op.inputs[0]
        weights = op.inputs[1]

        n_in_elems = weights.shape[-2]
        elms = inp.elements()
        batch_size = elms // n_in_elems
        assert batch_size * n_in_elems == elms

        desired_shape = [batch_size, n_in_elems]
        if inp.shape != desired_shape:
            # mismatch, insert a reshape to fix this.
            reshape_name = op.name + "_reshape"
            new_shape_tens = Tensor([1], DataType.int32, reshape_name + "_shape")
            new_shape_tens.values = np.array(desired_shape)
            new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
            new_shape_tens.ops = [new_shape_tens_const]
            new_shape_tens_const.outputs = [new_shape_tens]

            reshape_op = Operation("Reshape", reshape_name)
            reshape_op.inputs = [inp, new_shape_tens]
            reshape_op.attrs["new_shape"] = desired_shape
            reshape_out = inp.clone("_reshaped")
            reshape_out.shape = reshape_out.storage_shape = reshape_out.bandwidth_shape = desired_shape
            reshape_out.ops = [reshape_op]
            reshape_op.outputs = [reshape_out]

            op.inputs[0] = reshape_out

    return op


def fixup_pack_input(op, arch):
    if op.type == "Pack":
        # Pack is also referred to as Stack
        # Requires the rewrite_concat function to be called on the op afterwards
        axis = int(op.attrs["axis"])
        desired_shape = op.inputs[0].shape[:axis] + [1] + op.inputs[0].shape[axis:]

        # Construct 1 shape tensor to be used by all inserted reshape ops
        new_shape_name = op.name + "_reshape_shape"
        new_shape_tens = Tensor([1], DataType.int32, new_shape_name)
        new_shape_tens.values = np.array(desired_shape)
        new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
        new_shape_tens.ops = [new_shape_tens_const]
        new_shape_tens_const.outputs = [new_shape_tens]

        for idx, inp in enumerate(op.inputs):
            reshape_name = op.name + str(idx) + "_reshape"
            reshape_op = Operation("Reshape", reshape_name)
            reshape_op.inputs = [inp, new_shape_tens]
            reshape_op.attrs["new_shape"] = desired_shape
            reshape_out = inp.clone("_reshaped")
            reshape_out.shape = reshape_out.storage_shape = reshape_out.bandwidth_shape = desired_shape
            reshape_out.ops = [reshape_op]
            reshape_op.outputs = [reshape_out]

            op.inputs[idx] = reshape_out

        op.type = "PackReshaped"

    return op


def fixup_unpack_output(tens, arch):
    op = tens.ops[0]
    if op.type in set(("Unpack", "StridedSlice")):
        # Unpack is also referred to as Unstack
        # Requires the rewrite_split function to be called on the op afterwards
        if op.type == "StridedSlice":
            shrink_axis_mask = op.attrs["shrink_axis_mask"]
            if shrink_axis_mask == 0:
                # Equal Rank StridedSlice, no need to insert reshape
                return tens

            # Only allow shrinking 1 axis for now
            assert shrink_axis_mask & (shrink_axis_mask - 1) == 0
            assert len(tens.shape) == (len(op.inputs[0].shape) - 1)

            axis = int(math.log2(shrink_axis_mask))
            op.attrs["shrink_axis_mask"] = 0
        else:
            axis = int(op.attrs["axis"])
            op.type = "UnpackReshaped"

        desired_shape = tens.shape[:axis] + [1] + tens.shape[axis:]

        # Construct 1 shape tensor to be used by all inserted reshape ops
        new_shape_name = op.name + "_reshape_shape"
        new_shape_tens = Tensor([1], DataType.int32, new_shape_name)
        new_shape_tens.values = np.array(tens.shape)
        new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
        new_shape_tens.ops = [new_shape_tens_const]
        new_shape_tens_const.outputs = [new_shape_tens]

        for idx, out_tens in enumerate(op.outputs):
            reshape_name = op.name + str(idx) + "_reshape"
            reshape_op = Operation("Reshape", reshape_name)
            reshape_op.outputs = [out_tens]
            reshape_in = out_tens.clone("_reshaped")
            reshape_in.shape = reshape_in.storage_shape = reshape_in.bandwidth_shape = desired_shape
            reshape_in.ops = [op]
            out_tens.ops = [reshape_op]
            reshape_op.inputs = [reshape_in, new_shape_tens]

            op.outputs[idx] = reshape_in

    return tens


def add_padding_fields(op, arch):
    if "padding" in op.attrs:
        if "Conv" in op.type:
            kernel_size = op.inputs[1].shape[:2]
            input_shape = op.inputs[0].shape
        elif "Pool" in op.type:
            kernel_size = op.attrs["ksize"][1:3]
            input_shape = op.inputs[0].shape
        elif op.type == "ExtractImagePatches":
            kernel_size = op.attrs["ksizes"][1:3]
            input_shape = op.inputs[0].shape
        else:
            assert 0, "Unknown operation that uses padding"

        padding, skirt = calc_padding_and_skirt(op.attrs["padding"], kernel_size, op.attrs["strides"], input_shape)
        op.attrs["explicit_padding"] = padding
        op.attrs["skirt"] = skirt
    return op


conv_op = set(("Conv2D", "QuantizedConv2D", "Conv2DBackpropInputSwitched", "Conv2DBiasAct"))
fc_op = set(
    (
        "MatMul",
        "QuantizedMatMul",
        "BlockLSTM",
        "RnnAct",
        "UnidirectionalSequenceRnnAct",
        "BidirectionalSequenceRnnAct",
        "LstmAct",
        "UnidirectionalSequenceLstmAct",
        "BidirectionalSequenceLstmAct",
        "FullyConnectedAct",
    )
)
depthwise_op = set(("DepthwiseConv2dNative", "DepthwiseConv2dBiasAct",))
pool_op = set(("AvgPool", "MaxPool", "QuantizedAvgPool", "QuantizedMaxPool", "AvgPoolAct", "MaxPoolAct"))
elementwise_op = set(("AddAct", "MulAct", "SubAct", "Maximum", "Minimum", "LeakyRelu", "Abs"))
activation_ops = set(("Relu", "Relu6", "ReluN1To1", "Sigmoid", "Tanh"))
memory_only_ops = set(("Reshape",))

# Check if the op can be reordered
def get_prepend_op(op):
    inp = op.inputs[0]
    # The op should be reordered between prev_op and prep_op
    prev_op = inp.ops[-1]
    prep_op = None
    while prev_op.type in memory_only_ops and len(prev_op.outputs) == 1 and len(prev_op.outputs[0].consumers()) == 1:
        prep_op = prev_op
        inp = prev_op.inputs[0]
        prev_op = inp.ops[-1]
    if prev_op != None and len(prev_op.outputs) == 1 and len(prev_op.outputs[0].consumers()) == 1:
        return prep_op

    return None


def mark_npu_block_type(op, arch):
    npu_block_type = NpuBlockType.Default
    if op.type in conv_op:
        npu_block_type = NpuBlockType.ConvolutionMxN
    elif op.type in fc_op:
        npu_block_type = NpuBlockType.VectorProduct
    elif op.type in depthwise_op:
        npu_block_type = NpuBlockType.ConvolutionDepthWise
    elif op.type in pool_op:
        npu_block_type = NpuBlockType.Pooling
    elif op.type in elementwise_op:
        npu_block_type = NpuBlockType.ElementWise

    op.attrs["npu_block_type"] = npu_block_type
    return op


def convert_depthwise_to_conv(op, arch):
    # Depthwise is equivalent to a single conv2d if the ifm depth is 1 and
    # the ofm depth equals the depth multipler.
    # If those conditions are true, then we can perform a simple
    # switch of the operator type (and weight order)

    if ("DepthwiseConv2d" in op.type) and (op.attrs["depth_multiplier"] != 1):
        ifm_tensor = op.inputs[0]
        weight_tensor = op.inputs[1]
        ofm_tensor = op.outputs[0]
        if (ifm_tensor.shape[3] == 1) and (ofm_tensor.shape[3] == op.attrs["depth_multiplier"]):
            # Change op type to Conv2d
            op.type = op.type.replace("DepthwiseConv2d", "Conv2D")
            del op.attrs["channel_multiplier"]
            del op.attrs["depth_multiplier"]

            weight_tensor.quant_values = np.transpose(weight_tensor.quant_values, (0, 1, 3, 2))
            weight_tensor.shape = weight_tensor.storage_shape = weight_tensor.bandwidth_shape = list(
                weight_tensor.quant_values.shape
            )
        else:
            print(
                "Error: Unsupported DepthwiseConv2d with depth_multiplier = {0}, "
                "ifm channels = {1}, ofm channels = {2}".format(
                    op.attrs["depth_multiplier"], ifm_tensor.shape[3], ofm_tensor.shape[3]
                )
            )
            assert False
    return op


# Reorder activation op if it's after the memory only operations
def fixup_act_reorder(op, arch):
    if op.type in activation_ops:
        prep_op = get_prepend_op(op)
        if prep_op != None:
            act_op = op.clone("_reordered")
            act_op.inputs = [prep_op.inputs[0]]
            act_op_out = act_op.inputs[0].clone("_acted")
            act_op_out.quantization = op.outputs[0].quantization.clone()
            act_op_out.ops = [act_op]
            act_op.outputs = [act_op_out]
            prep_op.inputs[0] = act_op_out
            prep_op.outputs[0].quantization = act_op_out.quantization.clone()

            # Mark the op so that it will be removed as passthrough later on
            op.type = "Identity"
    return op


def convert_mul_max_to_abs_or_lrelu(op, arch):
    """Whenever there is a subgraph with this topology:

       Input    X   For X = -1 or X > 0
       |   \   /    This subgraph can be replaced with either
       |    Mul     an Abs (if X = -1) or a LeakyReLU (if X > 0)
       |   /
       Max
    """

    if op.type == "Maximum":
        # finds the Mul input(s) to the Max
        muls = [i for i in op.inputs if i.ops[0].type == "MulAct"]
        if len(muls) == 1:
            mul = muls[0].ops[0]
        elif len(muls) == 2:
            # In the case both inputs are Muls, find the one with the same input as the Max
            mul = [m for m in muls if len(set(op.inputs + m.ops[0].inputs)) == 1][0].ops[0]
        else:
            # No Mul inputs
            return op

        # make sure the Mul doesn't have any other consumers
        if len(mul.outputs[0].consumers()) != 1:
            return op
        # make sure the Mul doesn't have a faf
        if mul.attrs["fused_activation_function"]:
            return op

        # finds the branched input that goes to both the Max and the Mul
        shared = set(op.inputs) & set(mul.inputs)
        if len(shared) == 1:
            shared_in = shared.pop()
            # find the constant scalar input to the Mul
            const_tens = (set(mul.inputs) - {shared_in}).pop()
            # check that it is a scalar
            if const_tens.shape != []:
                return op
            const = const_tens.ops[0]
            # check that it is a constant
            if const.type != "Const":
                return op
        else:
            return op

        val = const.outputs[0].values
        if val >= 0:
            new_op = "LeakyRelu"
            op.attrs["alpha"] = val
        elif val == -1:
            new_op = "Abs"
        else:
            return op

        op.type = op.type.replace("Maximum", new_op)
        op.name = op.name.replace("Maximum", new_op)
        op.outputs[0].name = op.outputs[0].name.replace("Maximum", new_op)
        op.inputs = [shared_in]
    return op


def supported_operator_check(op, arch):
    op.run_on_npu = arch.supported_operators.is_operator_supported(op)
    return op


def optimise_graph_a(nng, arch, verbose_graph=False):
    if verbose_graph:
        nng.print_graph()

    op_rewrite_list = [
        # mark block type and check if the operations are supported
        mark_npu_block_type,
        supported_operator_check,
        # then do any rewrites of supported operators
        convert_depthwise_to_conv,
        fixup_fully_connected_input,
        fixup_pack_input,
        fixup_conv2d_backprop,
        fixup_act_reorder,
        add_padding_fields,
        mark_npu_block_type,
        # convert_mul_max_to_abs_or_lrelu # TODO: enable optimisation once quantisation issues are resolved
    ]

    for idx, sg in enumerate(nng.subgraphs):
        # rewrite graph pass
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
            sg, arch, [fixup_unpack_output,], op_rewrite_list, rewrite_unsupported=False
        )

    for idx, sg in enumerate(nng.subgraphs):
        # remove passthrough tensors
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(sg, arch, [remove_passthrough_tensor,], [])

    if verbose_graph:
        nng.print_graph()
    return nng

def optimise_graph_b(nng, arch, verbose_graph=False):
    if verbose_graph:
        nng.print_graph()

    for idx, sg in enumerate(nng.subgraphs):
        # combined rewrite graph pass
        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(sg, arch, [rewrite_concat, rewrite_split,], [])

    if verbose_graph:
        nng.print_graph()
    return nng