aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/architecture_features.py
blob: b77205b9c30a8d79151897751d2cdf7b6a1f888c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Holds a container for Ethos-U55/System architecture parameters.
import enum
from collections import namedtuple
from configparser import ConfigParser

import numpy as np

from .errors import OptionError
from .ethos_u55_regs.ethos_u55_regs import resampling_mode
from .numeric_util import round_up
from .numeric_util import round_up_divide
from .operation import Kernel
from .operation import NpuBlockType
from .operation import PointXYZ
from .supported_operators import SupportedOperators
from .tensor import MemArea
from .tensor import MemType
from .tensor import TensorFormat
from .tensor import TensorPurpose


class Block:
    def __init__(self, w, h, d):
        self.width = w
        self.height = h
        self.depth = d

    def __eq__(self, other):
        if self.width == other.width and self.height == other.height and self.depth == other.depth:
            return True
        else:
            return False

    def __repr__(self):
        return "<Block: {0},{1},{2}>".format(self.width, self.height, self.depth)

    @classmethod
    def from_string(cls, s):
        w, h, c = (int(v) for v in s.split("x"))
        return cls(w, h, c)


class Rect:
    def __init__(self, x, y, z, x2, y2, z2):
        self.x = x
        self.y = y
        self.z = z
        self.x2 = x2
        self.y2 = y2
        self.z2 = z2

    def start(self):
        return PointXYZ(self.x, self.y, self.z)

    def end(self):
        return PointXYZ(self.x2, self.y2, self.z2)

    def size(self):
        return Block(self.x2 - self.x + 1, self.y2 - self.y + 1, self.z2 - self.z + 1)

    def __repr__(self):
        return "<Rect: ({0},{1},{2}) ({3},{4},{5})>".format(self.x, self.y, self.z, self.x2, self.y2, self.z2)


class SHRAMElements:
    IFM8 = 0
    IFM16 = 1
    IFM8_Elementwise = 2
    IFM16_Elementwise = 3
    IFM32 = 4
    Acc16 = 5
    Acc32 = 6
    Acc40 = 7
    Last = Acc40
    BitSizes = np.array([8, 16, 8, 16, 32, 16, 32, 40], np.int32)
    ByteSizes = BitSizes // 8
    PostAlign = np.array([8, 8, 8, 8, 8, 1, 1, 1], np.int32)
    PreAlign = np.array([1, 1, 1, 1, 1, 8, 8, 8], np.int32)


class SHRAMBlockConfig:
    def __init__(self, sizes, banks):
        assert len(banks) == SHRAMElements.Last + 1
        self.sizes = sizes
        self.banks = banks


# Area indices must match Ethos-U55 SHRAM layout spec
class SharedBufferArea(enum.IntEnum):
    OFM = 0
    Weights = 1
    IFM = 2
    Accumulators = 3
    Size = Accumulators + 1


class Accelerator(enum.Enum):
    Ethos_U55_32 = "ethos-u55-32"
    Ethos_U55_64 = "ethos-u55-64"
    Ethos_U55_128 = "ethos-u55-128"
    Ethos_U55_256 = "ethos-u55-256"
    Yoda_256 = "yoda-256"
    Yoda_512 = "yoda-512"

    @classmethod
    def member_list(cls):
        return [e.value for e in cls]


class ArchitectureFeatures:
    """This class is a container for various parameters of the Ethos-U55 core
    and system configuration that can be tuned, either by command line
    parameters or by the Ethos-U55 architects. The class is often passed
    around to passes that need to do architecture-dependent actions.

    Note the difference between ArchitectureFeatures and CompilerOptions
    - ArchitectureFeatures is for changing the Ethos-U55 and system architecture
    - CompilerOptions is for changing the behaviour of the compiler
    """

    ArchitectureConfig = namedtuple(
        "ArchitectureConfig", "macs cores ofm_ublock ifm_ublock shram_banks shram_granules elem_units"
    )
    accelerator_configs = {
        Accelerator.Yoda_512: ArchitectureConfig(
            256, 2, Block(2, 2, 8), Block(2, 2, 8), 48, [8, 8, 8, 8, 16, 8, 16, 20], 8
        ),
        Accelerator.Yoda_256: ArchitectureConfig(
            256, 1, Block(2, 2, 8), Block(2, 2, 8), 48, [8, 8, 8, 8, 16, 8, 16, 20], 8
        ),
        Accelerator.Ethos_U55_256: ArchitectureConfig(
            256, 1, Block(2, 2, 8), Block(2, 2, 8), 48, [8, 8, 8, 8, 16, 8, 16, 20], 8
        ),
        Accelerator.Ethos_U55_128: ArchitectureConfig(
            128, 1, Block(2, 1, 8), Block(2, 2, 8), 24, [4, 4, 4, 4, 8, 4, 8, 12], 4
        ),
        Accelerator.Ethos_U55_64: ArchitectureConfig(
            64, 1, Block(1, 1, 8), Block(1, 1, 8), 16, [2, 2, 2, 2, 4, 4, 4, 8], 2
        ),
        Accelerator.Ethos_U55_32: ArchitectureConfig(
            32, 1, Block(1, 1, 4), Block(1, 1, 8), 16, [2, 2, 2, 2, 4, 4, 4, 4], 1
        ),
    }

    OFMSplitDepth = 16
    SubKernelMax = Block(8, 8, 65536)

    def __init__(
        self,
        vela_config: ConfigParser,
        accelerator_config,
        system_config,
        override_block_config,
        block_config_limit,
        global_memory_clock_scale,
        max_blockdep,
        weight_estimation_scaling,
    ):
        accelerator_config = accelerator_config.lower()
        self.vela_config = vela_config
        if accelerator_config not in Accelerator.member_list():
            raise OptionError("--accelerator-config", self.accelerator_config, "Unknown accelerator configuration")
        self.accelerator_config = Accelerator(accelerator_config)
        accel_config = ArchitectureFeatures.accelerator_configs[self.accelerator_config]
        self.config = accel_config

        self.system_config = system_config
        self.is_yoda_system = self.accelerator_config in (Accelerator.Yoda_256, Accelerator.Yoda_512)

        self.max_outstanding_dma = 2 if self.is_yoda_system else 1
        self.max_outstanding_kernels = 3

        self.ncores = accel_config.cores
        self.ofm_ublock = accel_config.ofm_ublock
        self.ifm_ublock = accel_config.ifm_ublock
        self.ofm_block_max = Block(64, 32, 128)
        self.override_block_config = override_block_config
        self.block_config_limit = block_config_limit

        self.global_memory_clock_scale = global_memory_clock_scale
        if self.global_memory_clock_scale <= 0.0 or self.global_memory_clock_scale > 1.0:
            raise Exception(
                "Invalid global_memory_clock_scale = "
                + str(self.global_memory_clock_scale)
                + " (must be > 0.0 and <= 1.0)"
            )

        self.max_blockdep = max_blockdep
        self.weight_estimation_scaling = weight_estimation_scaling

        dpu_min_height = accel_config.ofm_ublock.height
        dpu_min_width = accel_config.ofm_ublock.width
        dpu_dot_product_width = 8
        dpu_min_ofm_channels = accel_config.ofm_ublock.depth

        self.num_elem_wise_units = accel_config.elem_units
        self.num_macs_per_cycle = dpu_min_height * dpu_min_width * dpu_dot_product_width * dpu_min_ofm_channels

        self.memory_clock_scales = np.zeros(MemArea.Size)
        self.memory_port_widths = np.zeros(MemArea.Size)

        # Get system configuration
        self.__read_sys_config(self.is_yoda_system)

        # apply the global memory clock scales to the individual ones from the system config
        for mem in MemArea.all():
            self.memory_clock_scales[mem] *= self.global_memory_clock_scale

        self.memory_clocks = self.memory_clock_scales * self.npu_clock
        self.memory_bandwidths_per_cycle = self.memory_port_widths * self.memory_clock_scales / 8

        self.memory_bandwidths_per_second = self.memory_bandwidths_per_cycle * self.npu_clock

        # Get output/activation performance numbers
        self._generate_output_perf_tables(self.accelerator_config)

        # sizes as N x H x W x C. we need to round up to these when allocating storage
        self.storage_rounding_quantums = {
            TensorFormat.Unknown: (1, 1, 1, 1),
            TensorFormat.WeightsCompressed: (1, 1, 1, 1),
            TensorFormat.NHWC: (1, 1, 1, 1),
            TensorFormat.NHCWB16: (1, 1, 1, 16),
        }

        # brick sizes as N x H x W x C. We have to fetch whole bricks at a time
        self.brick_sizes = {
            TensorFormat.Unknown: (1, 1, 1, 1),
            TensorFormat.WeightsCompressed: (1, 1, 1, 1),
            TensorFormat.NHWC: (1, 1, 1, 1),
            TensorFormat.NHCWB16: (1, 1, 1, 16),
        }

        self.default_weight_format = TensorFormat.WeightsCompressed
        self.default_feature_map_format = TensorFormat.NHWC

        self.tensor_storage_mem_area = {
            # permanent mem_area
            TensorPurpose.Unknown: MemArea.Unknown,
            TensorPurpose.Weights: self.permanent_storage_mem_area,
            TensorPurpose.FeatureMap: self.feature_map_storage_mem_area,
            TensorPurpose.LUT: self.permanent_storage_mem_area,
        }

        self.tensor_storage_mem_type = {
            TensorPurpose.Unknown: MemType.Unknown,
            TensorPurpose.Weights: MemType.Permanent_NPU,
            TensorPurpose.FeatureMap: MemType.Scratch,
            TensorPurpose.LUT: MemType.Scratch,
        }

        self.min_block_sizes = {
            NpuBlockType.Default: (dpu_min_height, dpu_min_width),
            NpuBlockType.VectorProduct: (1, 1),
            NpuBlockType.ConvolutionMxN: (dpu_min_height, dpu_min_width),
            NpuBlockType.Pooling: (dpu_min_height, dpu_min_width),
            NpuBlockType.ConvolutionDepthWise: (dpu_min_height, dpu_min_width),
            NpuBlockType.ElementWise: (1, 1),
            NpuBlockType.ReduceSum: (dpu_min_height, dpu_min_width),
        }

        self.sub_kernel_limits = {
            NpuBlockType.Default: (8, 8),
            NpuBlockType.VectorProduct: (1, 1),
            NpuBlockType.ConvolutionMxN: (8, 8),
            NpuBlockType.Pooling: (8, 8),
            NpuBlockType.ConvolutionDepthWise: (8, 8),
            NpuBlockType.ElementWise: (1, 1),
            NpuBlockType.ReduceSum: (8, 8),
        }

        # weights for scheduler search
        from .npu_performance import make_bandwidth_array

        self.bandwidth_weights = make_bandwidth_array()
        self.bandwidth_weights[MemArea.Sram] = 1.0
        self.bandwidth_weights[MemArea.Dram] = 10.0
        self.bandwidth_weights[MemArea.OnChipFlash] = 2.0
        self.bandwidth_weights[MemArea.OffChipFlash] = 20.0
        self.cycles_weight = 40
        self.max_sram_used_weight = 1000

        if self.is_yoda_system and (self.fast_storage_mem_area != self.feature_map_storage_mem_area):
            self.max_sram_used_weight = 0

        # Shared Buffer Block allocations
        self.shram_bank_size = 1024  # bytes
        self.shram_size_bytes = accel_config.shram_banks * self.shram_bank_size
        self.shram_reserved_output_banks = 2
        self.shram_reserved_weight_banks = 0
        self.shram_reserved_unused_banks = 2 if accel_config.shram_banks > 16 else 0
        self.shram_total_banks = accel_config.shram_banks - self.shram_reserved_unused_banks
        self.shram_bank_granules = np.array(accel_config.shram_granules, np.int32)
        self.shram_lut_size = 2048
        # SHRAM base address of the activation lookup table
        self.shram_lut_address = self.shram_bank_size * self.available_shram_banks(True)

        # Build a map of acceptable IFM/OFM block configurations up to the maximum
        # IFM/OFM block size.
        ifm_block_max = self.get_ifm_block_size(32, self.ofm_block_max, Kernel(8, 8))
        self.block_config_map = dict()
        self.generate_block_config_map(Block(ifm_block_max.width, ifm_block_max.height, 128))

        # Setup supported operators and restriction checkers class
        self.supported_operators = SupportedOperators()

    # Returns available number of SHRAM banks depending on activation lookup table
    # being used or not
    def available_shram_banks(self, uses_activation_lut):
        banks = self.shram_total_banks
        if uses_activation_lut and self.shram_reserved_unused_banks == 0:
            banks -= 2
        return banks

    # Calculate block configuration for ALL known IFM operations and
    # accumulator sizes. Consumers will need to select their preferred
    # operation and bit-width at read-time.
    def generate_block_config(self, width, height, depth):
        # Number of bytes required for any SHRAM element for a FM of given dimensions.
        # For IFM: size = H*W*Align(D*BYTE_WIDTH, 8)
        # For ACC: size = H*W*Align(D,8)*BYTE_WIDTH
        d1 = round_up(depth, SHRAMElements.PreAlign)
        d2 = round_up(d1 * SHRAMElements.ByteSizes, SHRAMElements.PostAlign)
        size_bytes = (height * width) * d2

        # Convert byte size (rounded) to size in banks
        size_banks = round_up_divide(size_bytes, self.shram_bank_size)
        size_banks *= 2  # Double buffer the IFM/Acc (need twice as many banks)
        # Round bank requirement to bank granularity
        required_banks = round_up(size_banks, self.shram_bank_granules)
        return SHRAMBlockConfig(size_bytes, required_banks)

    @staticmethod
    def make_block_config_key(width, height, depth):
        return (int(height), int(width), int(depth))

    def get_block_config(self, width, height, depth):
        assert depth <= self.ofm_block_max.depth
        key = ArchitectureFeatures.make_block_config_key(width, height, depth)
        config = self.block_config_map.get(key, None)
        return config

    # Generate a key:value map of possible block configurations, where the
    # key is compounded from the block dimensions: 0x00HHWWCC
    def generate_block_config_map(self, block: Block):
        for h in range(1, block.height + 1):
            for w in range(1, block.width + 1):
                # All possible IFM/OFM depth values
                for c in [4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128]:
                    key = ArchitectureFeatures.make_block_config_key(w, h, c)
                    self.block_config_map[key] = self.generate_block_config(w, h, c)

    def _generate_output_perf_tables(self, accel_config):
        if accel_config == Accelerator.Ethos_U55_32:
            self.output_cycles_per_elem = (2.0, 3.0, 3.0, 3.0, 4.0, 6.0, 1.0, 2.0)
            self.activation_cycles_per_elem = (1.0, 1.0, 0.0)
        elif accel_config == Accelerator.Ethos_U55_64:
            self.output_cycles_per_elem = (1.0, 1.5, 1.5, 1.5, 2.0, 3.0, 0.5, 1.0)
            self.activation_cycles_per_elem = (1.0, 1.0, 0.0)
        elif accel_config == Accelerator.Ethos_U55_128:
            self.output_cycles_per_elem = (0.75, 1.25, 0.75, 0.75, 1.0, 1.5, 0.25, 0.5)
            self.activation_cycles_per_elem = (1.0, 0.5, 0.0)
        elif accel_config in (Accelerator.Ethos_U55_256, Accelerator.Yoda_256):
            self.output_cycles_per_elem = (0.625, 1.125, 0.5, 0.375, 0.5, 0.75, 0.125, 0.25)
            self.activation_cycles_per_elem = (1.0, 0.25, 0.0)
        else:
            assert accel_config == Accelerator.Yoda_512
            self.output_cycles_per_elem = (0.3125, 0.5625, 0.25, 0.1875, 0.25, 0.375, 0.0625, 0.125)
            self.activation_cycles_per_elem = (0.5, 0.125, 0.0)

    def calc_ifm_block_depth(self, ifm_depth, ifm_bits):
        assert ifm_bits in (8, 16, 32)
        assert ifm_depth > 0
        ifm_depth = round_up(ifm_depth, self.ifm_ublock.depth)
        max_block_depth = 8 * 32 // ifm_bits
        return min(max_block_depth, ifm_depth)

    # Calculate the size of the IFM block given a depth, target OFM block and a kernel
    def get_ifm_block_size(
        self,
        ifm_block_depth,
        ofm_block: Block,
        kernel: Kernel,
        subkernel: Block = Block(8, 8, 65536),
        ifm_resampling_mode=resampling_mode.NONE,
    ):
        upscaling = 1 if ifm_resampling_mode == resampling_mode.NONE else 2
        # Height
        ifm_odd_2x_height_enable = 0
        dilated_kernel_height = ((kernel.height - 1) * kernel.dilation.y) + 1
        ifm_block_height = (
            (ofm_block.height - 1) * kernel.stride.y
            + min(subkernel.height, dilated_kernel_height)
            + ifm_odd_2x_height_enable
        ) // upscaling

        ifm_block_height = round_up(ifm_block_height, self.ofm_ublock.height)

        # Width
        ifm_odd_2x_width_enable = 0
        dilated_kernel_width = ((kernel.width - 1) * kernel.dilation.x) + 1
        ifm_block_width = (
            (ofm_block.width - 1) * kernel.stride.x
            + min(subkernel.width, dilated_kernel_width)
            + ifm_odd_2x_width_enable
        ) // upscaling

        ifm_block_width = round_up(ifm_block_width, self.ofm_ublock.width)

        return Block(ifm_block_width, ifm_block_height, ifm_block_depth)

    @staticmethod
    def intersects(start_a, end_a, start_b, end_b):
        start_x = max(start_a[0], start_b[0])
        end_x = min(end_a[0], end_b[0])
        start_y = max(start_a[1], start_b[1])
        end_y = min(end_a[1], end_b[1])
        start_z = max(start_a[2], start_b[2])
        end_z = min(end_a[2], end_b[2])
        return ((end_x - start_x) > 0) and ((end_y - start_y) > 0) and ((end_z - start_z) > 0)

    # Block job dependency:
    # Does the VOLUME of IFMs for block job B(0) overlap with VOLUME of OFMs block jobs A(8,9,10)
    #
    #  A                    | B
    # ----------------------+------------------
    # .... 3,4,5,6,7,8,9,10 | 0,1,2,3,4,5,6,8 10 < JOB NUMBER
    #               |<------->| dependency offset
    #
    MAX_BLOCKDEP = 3

    # Get the coordinates of a block offset from either the end (negative)
    # or the start (zero or positive) of the given 3d area
    def get_offset_block_coords(self, area: Rect, block: Block, offset):
        size = area.size()
        # Dimensions of the region, in blocks
        width_blocks = round_up_divide(size.width, block.width)
        height_blocks = round_up_divide(size.height, block.height)
        depth_blocks = round_up_divide(size.depth, block.depth)
        total_blocks = width_blocks * height_blocks * depth_blocks
        if offset < 0:
            index = total_blocks + offset
        else:
            index = offset

        if index >= total_blocks:
            return None

        # Coordinates of the indexed block
        coord_z = block.depth * (index % depth_blocks)
        coord_y = block.height * (index // (depth_blocks * width_blocks))
        coord_x = block.width * ((index // depth_blocks) % width_blocks)

        return (coord_x + area.x, coord_y + area.y, coord_z + area.z)

    def get_first_job_input_volume(
        self, ifm: Rect, ofm: Rect, ifm_block_depth, ofm_block: Block, kernel: Kernel, padLT, block_offset
    ):
        # Get ifm block size (jobs are invisibly decomposed into subkernels)
        ifm_block = self.get_ifm_block_size(ifm_block_depth, ofm_block, kernel, self.ofm_block_max)
        ifm_depth_blocks = round_up_divide(ifm.size().depth, ifm_block_depth)

        # Which OFM block are we calculating
        ofm_coord = self.get_offset_block_coords(ofm, ofm_block, block_offset // ifm_depth_blocks)
        if ofm_coord is None:
            return None

        # Coordinate of the source IFM block
        ifm_coord_x = max(0, ofm_coord[0] * kernel.stride.x - padLT[0])
        ifm_coord_y = max(0, ofm_coord[1] * kernel.stride.y - padLT[1])
        ifm_coord_z = ifm.z + (block_offset % ifm_depth_blocks) * ifm_block.depth

        # IFM block that will be sampled for the FIRST+block_offset job in the next operator's OFM
        start_coord = (ifm_coord_x, ifm_coord_y, ifm_coord_z)
        end_coord = (
            start_coord[0] + ifm_block.width,
            start_coord[1] + ifm_block.height,
            start_coord[2] + ifm_block.depth,
        )

        return (start_coord, end_coord, 1)  # start, end, total jobs

    def get_prev_job_output_volume(
        self, ifm: Block, ofm: Rect, ifm_block_depth, ofm_block: Block, kernel: Kernel, block_offset
    ):
        assert block_offset >= 0

        # Get OFM block's volume coordinates
        start_coord = self.get_offset_block_coords(ofm, ofm_block, -1 - block_offset)
        if start_coord is None:
            return None
        end_coord = (
            start_coord[0] + ofm_block.width,
            start_coord[1] + ofm_block.height,
            start_coord[2] + ofm_block.depth,
        )

        # Calculate how many IFM blocks this OFM block requires (i.e how many jobs)
        ifm_depth_blocks = round_up_divide(ifm.size().depth, ifm_block_depth)
        ifm_depth_blocks = 1  # Overwrite with 1 to force OFM block dependency, not IFM

        return (start_coord, end_coord, ifm_depth_blocks)  # start, end, total jobs for this OFM block

    def calc_block_dep(
        self,
        prev_ifm: Block,
        prev_ofm: Block,
        prev_ifm_block_depth,
        prev_ofm_block: Block,
        prev_kernel: Kernel,
        ifm: Block,
        ofm: Block,
        ifm_block_depth,
        ofm_block: Block,
        kernel: Kernel,
        padLT,
    ):

        blockdep = ArchitectureFeatures.MAX_BLOCKDEP

        # Iterate over the next BLOCKDEP inputs, checking to see if a sliding window
        # of IFM area overlaps with any previous OFM block generation.
        elapsed_jobs = 0
        for forward_offset in range(ArchitectureFeatures.MAX_BLOCKDEP):
            # This is the IFM block we want to sample from
            in_area = self.get_first_job_input_volume(
                ifm, ofm, ifm_block_depth, ofm_block, kernel, padLT, forward_offset
            )
            if in_area is None:
                break

            # Try several previous-OFM blocks in the past (they still might comprise multiple IFM jobs)
            outstanding_jobs = 0
            for block_offset in range(ArchitectureFeatures.MAX_BLOCKDEP):
                # This is the OFM block being generated by the previous op
                out_area = self.get_prev_job_output_volume(
                    prev_ifm, prev_ofm, prev_ifm_block_depth, prev_ofm_block, prev_kernel, block_offset
                )
                if out_area is None:
                    break

                # Block dependency is the max number of allowed outstanding jobs
                # in the pipeline. Selected by determining how many jobs occur
                # in between two operators' overlapping OFM->IFM block volumes
                if ArchitectureFeatures.intersects(in_area[0], in_area[1], out_area[0], out_area[1]):
                    break
                # Early exit if no intersections and we've seen enough jobs in the pipeline
                elif outstanding_jobs > ArchitectureFeatures.MAX_BLOCKDEP:
                    break

                # This OFM had this many jobs (accumulate over multiple OFM blocks)
                outstanding_jobs += out_area[2]

            blockdep = min(blockdep, elapsed_jobs + outstanding_jobs)
            elapsed_jobs += in_area[2]
            # Early exit if no intersections and we've seen enough jobs in the pipeline
            if elapsed_jobs > ArchitectureFeatures.MAX_BLOCKDEP:
                break

        return blockdep

    def cpu_cycle_estimate(self, op):
        """
        Gets estimated performance of a CPU operation, based on a linear model of intercept, slope,
        specified in the vela config file, in ConfigParser file format (.ini file).
        Example configuration snippet:
        [CpuPerformance.MyOperationType]
        Cortex-Mx.intercept=<some float value>
        Cortex-Mx.slope=<some float value>
        """
        section = "CpuPerformance." + op.type.name
        if self.vela_config is not None and section in self.vela_config:
            op_config = self.vela_config[section]
            try:
                intercept = float(op_config.get(self.cpu_config + ".intercept", op_config["default.intercept"]))
                slope = float(op_config.get(self.cpu_config + ".slope", op_config["default.slope"]))
                n_elements = op.inputs[0].elements()
                cycles = intercept + n_elements * slope
                return cycles
            except Exception:
                print("Error: Reading CPU cycle estimate in vela configuration file, section {}".format(section))
                raise

        print("Warning: No configured CPU performance estimate for", op.type)
        return 0

    def __read_sys_config(self, is_yoda_system):
        """
        Gets the system configuration with the given name from the vela configuration file
        Example configuration snippet:
        [SysConfig.MyConfigName]
        npu_freq=<some float value>
        cpu=Cortex-Mx
        ...
        """
        # Get system configuration from the vela configuration file
        if self.vela_config is None:
            print("Warning: Using default values for system configuration")
        else:
            section_key = "SysConfig." + self.system_config
            if section_key not in self.vela_config:
                raise OptionError("--system-config", self.system_config, "Unknown system configuration")

        try:
            self.npu_clock = float(self.__sys_config("npu_freq", "500e6"))
            self.cpu_config = self.__sys_config("cpu", "Cortex-M7")

            self.memory_clock_scales[MemArea.Sram] = float(self.__sys_config("Sram_clock_scale", "1"))
            self.memory_port_widths[MemArea.Sram] = int(self.__sys_config("Sram_port_width", "64"))

            self.memory_clock_scales[MemArea.OnChipFlash] = float(self.__sys_config("OnChipFlash_clock_scale", "1"))
            self.memory_port_widths[MemArea.OnChipFlash] = int(self.__sys_config("OnChipFlash_port_width", "64"))

            self.memory_clock_scales[MemArea.OffChipFlash] = float(
                self.__sys_config("OffChipFlash_clock_scale", "0.25")
            )
            self.memory_port_widths[MemArea.OffChipFlash] = int(self.__sys_config("OffChipFlash_port_width", "32"))

            self.memory_clock_scales[MemArea.Dram] = float(self.__sys_config("Dram_clock_scale", "1"))
            self.memory_port_widths[MemArea.Dram] = int(self.__sys_config("Dram_port_width", "32"))

            self.fast_storage_mem_area = MemArea[self.__sys_config("fast_storage_mem_area", "Sram")]
            self.feature_map_storage_mem_area = MemArea[self.__sys_config("feature_map_storage_mem_area", "Sram")]

            self.permanent_storage_mem_area = MemArea[self.__sys_config("permanent_storage_mem_area", "OffChipFlash")]
            if is_yoda_system:
                if self.permanent_storage_mem_area is not MemArea.Dram:
                    raise Exception(
                        "Invalid permanent_storage_mem_area = "
                        + str(self.permanent_storage_mem_area)
                        + " (must be 'DRAM' for Yoda)."
                    )
            else:
                if self.permanent_storage_mem_area not in set((MemArea.OnChipFlash, MemArea.OffChipFlash)):
                    raise Exception(
                        "Invalid permanent_storage_mem_area = "
                        + str(self.permanent_storage_mem_area)
                        + " (must be 'OnChipFlash' or 'OffChipFlash' for ethosu-55)."
                        " To store the weights and other constant data in SRAM on ethosu-55 select 'OnChipFlash'"
                    )

            self.sram_size = 1024 * int(self.__sys_config("sram_size_kb", "204800"))

        except Exception:
            print("Error: Reading System Configuration in vela configuration file, section {}".format(section_key))
            raise

    def __sys_config(self, key, default_value):
        """
        Gets the system configuration value with the given key from the vela config file.
        """
        if self.vela_config is None:
            return default_value
        section = "SysConfig." + self.system_config
        result = self.vela_config[section].get(key, None)
        if result is None:
            raise Exception("Error: System Configuration Missing key {} in section [{}] ".format(key, section))
        return result