aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/weight_compressor.py
diff options
context:
space:
mode:
Diffstat (limited to 'ethosu/vela/weight_compressor.py')
-rw-r--r--ethosu/vela/weight_compressor.py467
1 files changed, 216 insertions, 251 deletions
diff --git a/ethosu/vela/weight_compressor.py b/ethosu/vela/weight_compressor.py
index 9a1d5a16..652d0168 100644
--- a/ethosu/vela/weight_compressor.py
+++ b/ethosu/vela/weight_compressor.py
@@ -16,6 +16,7 @@
# Description:
# Compresses and pads the weigths. It also calculates the scales and packs with the biases.
from collections import namedtuple
+from collections import OrderedDict
from typing import Tuple
import numpy as np
@@ -25,27 +26,85 @@ from .architecture_features import Accelerator
from .architecture_features import ArchitectureFeatures
from .data_type import DataType
from .errors import UnsupportedFeatureError
-from .nn_graph import SchedulingStrategy
from .numeric_util import round_up
-from .numeric_util import round_up_divide
from .operation import NpuBlockType
from .operation import Op
from .scaling import quantise_scale
from .scaling import reduced_quantise_scale
-from .tensor import create_equivalence_id
-from .tensor import TensorBlockTraversal
+from .tensor import Tensor
from .tensor import TensorFormat
from .tensor import TensorPurpose
-from .tensor import TensorSubPurpose
from ethosu import mlw_codec
# Contains meta info for a weight compression. If two tensors have identical weight compression config,
# then they also will have identical compressed weights.
WeightCompressionConfig = namedtuple(
- "WeightCompressionConfig", ["npu_block_type", "ofm_block_depth", "ofm_depth_step", "dilation", "value_id"]
+ "WeightCompressionConfig",
+ ["npu_block_type", "ofm_block_depth", "ofm_depth_step", "dilation", "weight_value_id", "scale_value_id"],
)
+WeightKey = namedtuple("WeightKey", ["core", "depth"])
+
+
+class WeightRange:
+ def __init__(self):
+ self.offset = 0
+ self.scale_bytes = 0
+ self.weight_offset = 0
+ self.weight_bytes = 0
+ self.index = 0
+
+ @property
+ def total_bytes(self):
+ return self.scale_bytes + self.weight_bytes
+
+
+class NpuWeightTensor(Tensor):
+ def __init__(self, name):
+ Tensor.__init__(self, None, None, name + "_npu_encoded_weights")
+ self.buffer = []
+ self.max_range_bytes = 0
+ self.encoded_ranges = OrderedDict()
+ self.hw_traversal = NpuBlockTraversal.DEPTH_FIRST
+ self.dtype = DataType.uint8
+
+
+class CompressedWeightCache:
+ """Global tensor weight compression cache"""
+
+ cache = {}
+
+ @staticmethod
+ def get_tensor_with_same_compression(wcc):
+ return CompressedWeightCache.cache.get(wcc)
+
+ @staticmethod
+ def add(tens):
+ # Adds the compressed weights from the tensor to the cache
+ wcc = tens.weight_compression_config
+ CompressedWeightCache.cache[wcc] = tens
+
+ @staticmethod
+ def has_tensor_with_same_compression(wcc):
+ return wcc in CompressedWeightCache.cache
+
+ @staticmethod
+ def get_unencoded_size_with_same_compression(wcc):
+ cache_obj = CompressedWeightCache.cache.get(wcc)
+ return cache_obj[1] if cache_obj else None
+
+
+def create_weight_compression_config(
+ weight_tens, scale_tens, npu_block_type, ofm_block_depth, ofm_depth_step, dilation
+):
+ # Note: for an ofm block only its depth is used in weight compression.
+ # And block depth > ofm depth gives same result as block depth == ofm depth
+ block_depth = min(ofm_block_depth, weight_tens.quant_values.shape[-1])
+ return WeightCompressionConfig(
+ npu_block_type, block_depth, ofm_depth_step, dilation, weight_tens.value_id, scale_tens.value_id
+ )
+
def encode_weights(
accelerator: Accelerator,
@@ -140,185 +199,13 @@ def encode_bias(bias: np.int64, scale: int, shift: int):
return data
-def create_weight_compression_config(tens, npu_block_type, ofm_block_depth, ofm_depth_step, dilation):
- # Note: for an ofm block only its depth is used in weight compression.
- # And block depth > ofm depth gives same result as block depth == ofm depth
- block_depth = min(ofm_block_depth, tens.quant_values.shape[-1])
- return WeightCompressionConfig(npu_block_type, block_depth, ofm_depth_step, dilation, tens.value_id)
-
-
-def set_storage_shape(tens):
- # Sets the storage shape depending on the tensor's sub purpose
- if tens.sub_purpose == TensorSubPurpose.DoubleBuffer and len(tens.compressed_values) > 2:
- offset = 2 * np.amax([len(x) for x in tens.compressed_values])
- assert offset % 16 == 0
- else:
- offset = tens.weight_compressed_offsets[-1]
- tens.storage_shape = [1, 1, 1, offset]
-
-
-class CompressedWeightCache:
- # Contains weight compressions for all weight tensors in a graph
- def __init__(self):
- self.cache = {} # maps from WeightCompressionConfig to a tensor clone containing compressed weights
-
- def has_tensor_with_same_compression(self, wcc):
- return self.cache.get(wcc) is not None
-
- def get_tensor_with_same_compression(self, wcc):
- cache_obj = self.cache.get(wcc)
- return cache_obj[0] if cache_obj else None
-
- def get_unencoded_size_with_same_compression(self, wcc):
- cache_obj = self.cache.get(wcc)
- return cache_obj[1] if cache_obj else None
-
- def add(self, tens, unencoded_size):
- # Adds the compressed weights from the tensor to the cache
- wcc = tens.weight_compression_config
- # Clone the tensor to make sure that nothing related to the weight compression is modified
- tens_clone = tens.clone("_weights{}_{}".format(wcc.ofm_block_depth, wcc.ofm_depth_step))
- self.cache[wcc] = (tens_clone, unencoded_size)
-
-
def core_deinterleave(hwio, core, ncores):
# Put weights back into OHWI
ohwi = np.transpose(hwio, (3, 0, 1, 2))
return ohwi[core : ohwi.shape[0] : ncores]
-# Compress the weights
-def compress_weights(arch, nng, tens, npu_block_type, ofm_block_depth, ofm_depth_step, dilation):
- assert tens.purpose == TensorPurpose.Weights
-
- # Check the weight cache
- if nng.weight_cache is None:
- nng.weight_cache = CompressedWeightCache()
- wcc = create_weight_compression_config(tens, npu_block_type, ofm_block_depth, ofm_depth_step, dilation)
- tens.weight_compression_config = wcc
- # Reassign equivalence id such that tensors with same weight compression get identical equivalence ids,
- # but tensors with the same values but different compression get different equivalence ids
- tens.equivalence_id = create_equivalence_id(wcc)
- tens_cached = nng.weight_cache.get_tensor_with_same_compression(wcc)
- if tens_cached is not None:
- # Cache hit, copy weights from the cache
- tens.copy_compressed_weight_info(tens_cached)
- set_storage_shape(tens)
- return nng.weight_cache.get_unencoded_size_with_same_compression(wcc)
- # No cache hit, perform the compression
- assert tens.quantization is not None
- assert tens.quantization.scale_f32 is not None
- assert tens.quantization.zero_point is not None
-
- zero_point = tens.quantization.zero_point
- quant_buf = tens.quant_values.astype(np.int64)
-
- # Early zero-point correction
- weights = quant_buf - zero_point
-
- if len(weights.shape) == 2:
- weights = np.expand_dims(np.expand_dims(weights, axis=0), axis=0)
-
- compression_scales = []
- compressed_offsets = []
- encoded_streams = []
- encoded_streams_substream_offsets = []
- offset = 0
- max_single_buffer_len = 0
- unencoded_size = 0
-
- ifm_bitdepth = tens.consumer_list[0].inputs[0].dtype.size_in_bits()
- ifm_depth = weights.shape[-2]
- if npu_block_type == NpuBlockType.ConvolutionDepthWise:
- tens.block_traversal = TensorBlockTraversal.DepthWise
- if npu_block_type == NpuBlockType.ConvolutionMxN:
- # Determine which block traversal strategy has better DPU utilization
- kernel_size = weights.shape[0] * weights.shape[1]
- depth_utilization = weights.shape[2] / round_up(weights.shape[2], 32 if ifm_bitdepth == 8 else 16)
- part_kernel_utilization = (weights.shape[2] / round_up(weights.shape[2], 8)) * (
- kernel_size / round_up(kernel_size, 4 if ifm_bitdepth == 8 else 2)
- )
- if part_kernel_utilization >= depth_utilization or ifm_depth <= 8:
- # Part-kernel first is always better for ifm depths <= 8
- tens.block_traversal = TensorBlockTraversal.PartKernelFirst
- else:
- tens.block_traversal = TensorBlockTraversal.DepthFirst
-
- is_depthwise = tens.block_traversal == TensorBlockTraversal.DepthWise
- if tens.block_traversal == TensorBlockTraversal.PartKernelFirst:
- block_traversal = NpuBlockTraversal.PART_KERNEL_FIRST
- else:
- block_traversal = NpuBlockTraversal.DEPTH_FIRST
-
- if tens.consumer_list[0].type == Op.Conv2DBackpropInputSwitchedBias:
- # Transpose Convoluion, reverse weights in H and W axes
- weights = np.flip(weights, axis=(0, 1))
-
- # Calculate brick size
- brick_size = (weights.shape[0], weights.shape[1], weights.shape[2], min(tens.shape[-1], ofm_depth_step))
- elements_in_brick = np.prod(brick_size)
-
- # Slice weight stream up depth-ways into bricks and compress
- full_ofm_depth = quant_buf.shape[-1]
- for idx in range(0, full_ofm_depth, ofm_depth_step):
- # Get the weights necessary for this brick
- count = min(full_ofm_depth - idx, ofm_depth_step)
- brick_weights = weights[:, :, :, idx : idx + count]
-
- substream_offsets = [0]
- encoded_stream = []
-
- # For each core, deinterleave weights from the larger volume
- # and generate separate compressed streams.
- for core in range(0, min(arch.ncores, full_ofm_depth)):
- core_weights = core_deinterleave(brick_weights, core, arch.ncores)
-
- block_depth = (ofm_block_depth + arch.ncores - 1 - core) // arch.ncores
- encoded_substream = []
- if block_depth != 0:
- encoded_substream, raw_stream_size = encode_weights(
- accelerator=arch.accelerator_config,
- weights_volume=core_weights,
- dilation_xy=dilation,
- ifm_bitdepth=ifm_bitdepth,
- ofm_block_depth=block_depth,
- is_depthwise=is_depthwise,
- block_traversal=block_traversal,
- )
- unencoded_size += raw_stream_size
- encoded_stream.extend(encoded_substream)
- substream_offsets.append(len(encoded_stream))
-
- encoded_streams.append(encoded_stream)
- encoded_streams_substream_offsets.append(substream_offsets)
-
- # Remember maximum encoded length for DoubleBuffering
- max_single_buffer_len = max(max_single_buffer_len, len(encoded_stream))
-
- # Remember where we put it for linear addressing
- compressed_offsets.append(offset)
- offset += len(encoded_stream)
- assert offset % 16 == 0
-
- # Compression scale tracking
- compression_scales.append(len(encoded_stream) / elements_in_brick)
-
- # Track total length as last element of the offsets array
- compressed_offsets.append(offset)
-
- tens.weight_compression_scales = compression_scales
- tens.weight_compressed_offsets = compressed_offsets
- tens.compression_scale_for_worst_weight_stream = np.amax(compression_scales)
- tens.storage_compression_scale = tens.bandwidth_compression_scale = np.average(compression_scales)
- tens.compressed_values = encoded_streams
- tens.compressed_values_substream_offsets = encoded_streams_substream_offsets
- tens.brick_size = brick_size
- set_storage_shape(tens)
- nng.weight_cache.add(tens, unencoded_size)
- return unencoded_size
-
-
-def calc_scales_and_pack_biases(tens, arch, ofm_depth_step, rescale_for_faf=False):
+def _prepare_scale_and_bias(arch, tens, rescale_for_faf):
assert tens.purpose in [TensorPurpose.FeatureMap, TensorPurpose.FSBias]
assert tens.format == TensorFormat.NHWC
# the connected operator should expect a bias input unless it is a FullyConnected
@@ -381,79 +268,157 @@ def calc_scales_and_pack_biases(tens, arch, ofm_depth_step, rescale_for_faf=Fals
else:
quantised_scales = [quantise_scale(scale) for scale in scales]
- # pack the biases and scales
+ # If only 1 quantised scale is used, repeat that value for the length of the biases
if len(quantised_scales) == 1:
- # If only 1 quantised scale is used, repeat that value for the length of the biases
quantised_scales = [quantised_scales[0]] * len(biases)
- assert len(quantised_scales) == len(biases)
- tens.element_size_bytes = 10
- tens.compressed_values = []
- tens.compressed_values_substream_offsets = []
-
- total_elements = len(quantised_scales)
- alignment_bytes = 0
- for i in range(0, total_elements, ofm_depth_step):
- # Extract streams from brick to generate substreams for each core
- stream = bytearray()
- substream_offsets = [0]
- max_len = min(ofm_depth_step, total_elements - i)
- for core in range(0, min(arch.ncores, max_len)):
- core_scales = quantised_scales[i + core : i + core + max_len : arch.ncores]
- core_biases = biases[i + core : i + core + max_len : arch.ncores]
- for j, core_bias in enumerate(core_biases):
- stream.extend(encode_bias(np.int64(core_bias), *core_scales[j]))
-
- # Align to 16 for start for next substream
- remainder = (len(stream)) % 16
- if remainder > 0:
- stream.extend(bytearray(16 - remainder))
- alignment_bytes += 16 - remainder
-
- substream_offsets.append(len(stream))
-
- # Add to compressed values with their substream offset lists to the tensor
- tens.compressed_values.append(stream)
- tens.compressed_values_substream_offsets.append(substream_offsets)
-
- tens.storage_shape = [total_elements + round_up_divide(alignment_bytes, tens.element_size_bytes)]
-
-
-def update_pass_weight_and_scale_tensors(nng, arch):
- for sg in nng.subgraphs:
- for ps in sg.passes:
- tens = ps.weight_tensor
- if tens is not None:
- op = tens.find_npu_op()
- if op is None:
- continue
- needs_dma = tens.needs_dma()
- if ps.cascade.strategy == SchedulingStrategy.WeightStream and needs_dma:
- ofm_depth_step = ps.block_config[-1]
- else:
- ofm_depth_step = tens.shape[-1]
- nng.total_npu_weights += compress_weights(
- arch, nng, tens, op.type.npu_block_type, ps.block_config[-1], ofm_depth_step, op.get_dilation_h_w()
+ return quantised_scales, biases
+
+
+def encode_weight_and_scale_tensor(
+ arch, op, weight_tens, scale_tens, kernel, block_config, depth_offsets, rescale_for_faf=False
+) -> NpuWeightTensor:
+ npu_block_type = op.type.npu_block_type
+
+ wcc = create_weight_compression_config(
+ weight_tens, scale_tens, npu_block_type, block_config.ofm_block.depth, hash(str(depth_offsets)), kernel.dilation
+ )
+
+ tens_cached = CompressedWeightCache.get_tensor_with_same_compression(wcc)
+ if tens_cached is not None:
+ return tens_cached
+
+ npu_tensor = NpuWeightTensor(weight_tens.name)
+ npu_tensor.weight_compression_config = wcc
+
+ # No cache hit, perform the compression
+ assert weight_tens.quantization is not None
+ assert weight_tens.quantization.scale_f32 is not None
+ assert weight_tens.quantization.zero_point is not None
+
+ zero_point = weight_tens.quantization.zero_point
+ quant_buf = weight_tens.quant_values.astype(np.int64)
+
+ # Early zero-point correction
+ weights = quant_buf - zero_point
+
+ if len(weights.shape) == 2:
+ weights = np.expand_dims(np.expand_dims(weights, axis=0), axis=0)
+
+ # Expect this (undilated) equivalence
+ assert kernel.height == weights.shape[0]
+ assert kernel.width == weights.shape[1]
+ # Ensure depth offsets are terminated at end of OFM shape
+ assert len(depth_offsets) > 1, "Require closed depth ranges"
+
+ ifm_bitdepth = op.inputs[0].dtype.size_in_bits()
+ ifm_depth = weights.shape[-2]
+
+ # Default HW traversal
+ npu_tensor.hw_traversal = NpuBlockTraversal.DEPTH_FIRST
+
+ if npu_block_type == NpuBlockType.ConvolutionMxN:
+ # Determine which block traversal strategy has better DPU utilization
+ kernel_size = weights.shape[0] * weights.shape[1]
+ depth_utilization = weights.shape[2] / round_up(weights.shape[2], 32 if ifm_bitdepth == 8 else 16)
+ part_kernel_utilization = (weights.shape[2] / round_up(weights.shape[2], 8)) * (
+ kernel_size / round_up(kernel_size, 4 if ifm_bitdepth == 8 else 2)
+ )
+ if part_kernel_utilization >= depth_utilization or ifm_depth <= 8:
+ # Part-kernel first is always better for ifm depths <= 8
+ npu_tensor.hw_traversal = NpuBlockTraversal.PART_KERNEL_FIRST
+
+ if op.type == Op.Conv2DBackpropInputSwitchedBias:
+ # Transpose Convoluion, reverse weights in H and W axes
+ weights = np.flip(weights, axis=(0, 1))
+
+ encoded_stream = bytearray()
+ max_single_buffer_len = 0
+ is_depthwise = npu_block_type == NpuBlockType.ConvolutionDepthWise
+
+ # Bias & scale
+ if scale_tens:
+ quantised_scales, biases = _prepare_scale_and_bias(arch, scale_tens, rescale_for_faf)
+ scale_tens.element_size_bytes = 10
+
+ # Slice the weight stream up depth-ways into bricks and compress
+ full_ofm_depth = quant_buf.shape[-1]
+ ofm_block_depth = block_config.ofm_block.depth
+
+ weight_range_index = 0
+ for idx, depth_offset in enumerate(depth_offsets[:-1]):
+ # Do not generate for offsets outside the OFM
+ assert depth_offset >= 0 and depth_offset < full_ofm_depth
+ depth_length = depth_offsets[idx + 1] - depth_offset
+
+ # Get the weights necessary for this brick
+ brick_weights = weights[:, :, :, depth_offset : depth_offset + depth_length]
+
+ buffer_start_offset = len(encoded_stream)
+
+ # For each core, deinterleave weights from the larger volume
+ # and generate separate compressed streams.
+ for core in range(0, min(arch.ncores, full_ofm_depth)):
+
+ core_block_depth = int((ofm_block_depth + arch.ncores - 1 - core) // arch.ncores)
+
+ if core_block_depth != 0:
+ key = WeightKey(core, depth_offset)
+ weight_range = WeightRange()
+ weight_range.offset = len(encoded_stream)
+ weight_range.index = weight_range_index
+ weight_range_index += 1
+
+ # Scales & biases
+ if scale_tens:
+ scale_stream = []
+ core_scales = quantised_scales[
+ depth_offset + core : depth_offset + core + depth_length : arch.ncores
+ ]
+ core_biases = biases[depth_offset + core : depth_offset + core + depth_length : arch.ncores]
+ for j, core_bias in enumerate(core_biases):
+ scale_stream.extend(encode_bias(np.int64(core_bias), *core_scales[j]))
+
+ weight_range.scale_bytes = len(scale_stream)
+
+ encoded_stream.extend(scale_stream)
+
+ # Align to 16 for start of next substream
+ remainder = len(encoded_stream) % 16
+ if remainder > 0:
+ encoded_stream.extend(bytearray(16 - remainder))
+
+ # Weights
+ core_weights = core_deinterleave(brick_weights, core, arch.ncores)
+ encoded_substream, _ = encode_weights(
+ accelerator=arch.accelerator_config,
+ weights_volume=core_weights,
+ dilation_xy=kernel.dilation,
+ ifm_bitdepth=ifm_bitdepth,
+ ofm_block_depth=core_block_depth,
+ is_depthwise=is_depthwise,
+ block_traversal=npu_tensor.hw_traversal,
)
- nng.total_npu_encoded_weights += tens.weight_compressed_offsets[-1]
- nng.total_original_weights += int(tens.elements() * tens.element_size())
-
- # Update source tensor
- if needs_dma:
- src_tens = tens.get_dma_src_tensor()
- src_tens.shape = tens.shape
- src_tens.quant_values = tens.quant_values
- src_tens.copy_compressed_weight_info(tens)
- set_storage_shape(src_tens)
-
- if ps.scale_tensor is not None:
- rescale_for_faf = False
- if (ps.ops[-1].type in (Op.Sigmoid, Op.Tanh)) and (ps.npu_block_type != NpuBlockType.ElementWise):
- rescale_for_faf = True
- calc_scales_and_pack_biases(ps.scale_tensor, arch, ofm_depth_step, rescale_for_faf)
- if ps.scale_tensor.ops[0].type == Op.DMA:
- src_tens = ps.scale_tensor.get_dma_src_tensor()
- src_tens.shape = ps.scale_tensor.shape
- src_tens.quant_values = ps.scale_tensor.quant_values
- src_tens.element_size_bytes = ps.scale_tensor.element_size_bytes
- src_tens.copy_compressed_weight_info(ps.scale_tensor)
+
+ weight_range.weight_offset = len(encoded_stream) - weight_range.offset
+ weight_range.weight_bytes = len(encoded_substream)
+
+ # Append encoded weights section
+ encoded_stream.extend(encoded_substream)
+ assert len(encoded_stream) % 16 == 0
+
+ # Record encoded range in weights tensor
+ npu_tensor.encoded_ranges[key] = weight_range
+
+ # Remember maximum encoded length for DoubleBuffering
+ max_single_buffer_len = max(max_single_buffer_len, len(encoded_stream) - buffer_start_offset)
+
+ npu_tensor.buffer = encoded_stream
+ npu_tensor.max_range_bytes = max_single_buffer_len
+ npu_tensor.set_all_shapes([1, 1, 1, len(encoded_stream)])
+ npu_tensor.format = TensorFormat.WeightsCompressed
+ npu_tensor.purpose = TensorPurpose.Weights
+ npu_tensor.mem_area = weight_tens.mem_area
+ npu_tensor.mem_type = weight_tens.mem_type
+ CompressedWeightCache.add(npu_tensor)
+ return npu_tensor