aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/graph_optimiser.py
diff options
context:
space:
mode:
Diffstat (limited to 'ethosu/vela/graph_optimiser.py')
-rw-r--r--ethosu/vela/graph_optimiser.py485
1 files changed, 485 insertions, 0 deletions
diff --git a/ethosu/vela/graph_optimiser.py b/ethosu/vela/graph_optimiser.py
new file mode 100644
index 00000000..f0afcf8f
--- /dev/null
+++ b/ethosu/vela/graph_optimiser.py
@@ -0,0 +1,485 @@
+# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
+#
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the License); you may
+# not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an AS IS BASIS, WITHOUT
+# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+# Description:
+# Early optimisation of the network graph, using the rewrite_graph module to do the traversal of the graph. These are
+# split into two parts optimise_graph_a and optimise_graph_b.
+
+from .nn_graph import Operation, NpuBlockType, Tensor
+from . import rewrite_graph
+from .data_type import BaseType, DataType
+import numpy as np
+import math
+from .numeric_util import round_up_divide
+
+passthrough_nodes = set(("Identity",))
+
+
+def remove_passthrough_tensor(tens, arch):
+ if len(tens.ops) == 1 and tens.ops[0].type in passthrough_nodes:
+ assert len(tens.ops[0].inputs) == 1
+ tens = tens.ops[0].inputs[0]
+ return tens
+
+
+def rewrite_concat(tens, arch):
+ if len(tens.ops) == 1 and tens.ops[0].is_concat_op():
+ concat_op = tens.ops[0]
+ if tens != concat_op.outputs[0]:
+ return tens # don't attempt to rewrite the min/max outputs of QuantizedConcat
+
+ # Not supported so leave it and run on CPU
+ if not concat_op.run_on_npu:
+ return tens
+
+ inputs, axis = concat_op.get_concat_inputs_axis()
+
+ tens.ops = []
+ offset = 0
+ for idx, inp in enumerate(inputs):
+ new_op = Operation("ConcatSliceWrite", concat_op.name + str(idx))
+ new_op.inputs = [inp]
+ new_op.outputs = [tens]
+ new_op.attrs["concat_axis"] = axis
+ new_op.attrs["concat_start"] = offset
+ offset += inp.shape[axis]
+ new_op.attrs["concat_end"] = offset
+ new_op.run_on_npu = True
+ tens.ops.append(new_op)
+ assert tens.shape[axis] == offset
+
+ return tens
+
+
+def rewrite_split(tens, arch):
+
+ if len(tens.ops) == 1 and tens.ops[0].is_split_op():
+ split_op = tens.ops[0]
+
+ # Not supported so leave it and run on CPU
+ if not split_op.run_on_npu:
+ return tens
+
+ inp, outputs, axis, offset_start, offset_end = split_op.get_split_inputs_axis()
+
+ tens.ops = []
+ new_op = Operation("SplitSliceRead", split_op.name)
+ new_op.inputs = [inp]
+ new_op.outputs = [tens]
+
+ # For Split the offset cannot be extracted from the tensor so it has to
+ # be calculated from the index of the output tensor
+ if axis != None:
+ # Get the start and end of the split
+ offset_start = [0] * len(tens.shape)
+ offset_end = [0] * len(tens.shape)
+ for out in outputs:
+ if out == tens:
+ break
+ offset_start[axis] += out.shape[axis]
+
+ offset_end[axis] = offset_start[axis] + tens.shape[axis]
+
+ new_op.attrs["split_start"] = offset_start
+ new_op.attrs["split_end"] = offset_end
+ new_op.run_on_npu = True
+ tens.ops.append(new_op)
+
+ return tens
+
+
+def needed_total_padding(input_size, stride, filter_size):
+ out_size = (input_size + stride - 1) // stride
+ needed_input = (out_size - 1) * stride + filter_size
+ total_padding = max(0, needed_input - input_size)
+ return total_padding
+
+
+def calc_padding_and_skirt(padding_type, kernel_size, stride, input_dims):
+ ypad = needed_total_padding(int(input_dims[1]), int(stride[1]), int(kernel_size[0]))
+ xpad = needed_total_padding(int(input_dims[2]), int(stride[2]), int(kernel_size[1]))
+ if padding_type == b"SAME":
+ left_pad = (xpad + 0) // 2
+ right_pad = (xpad + 1) // 2
+ top_pad = (ypad + 0) // 2
+ bottom_pad = (ypad + 1) // 2
+ elif padding_type == b"VALID":
+ left_pad = 0
+ right_pad = 0
+ top_pad = 0
+ bottom_pad = 0
+ else:
+ assert 0, "Unknown padding"
+ padding = (top_pad, left_pad, bottom_pad, right_pad)
+ skirt = (top_pad, left_pad, ypad - top_pad, xpad - left_pad)
+ return padding, skirt
+
+
+def fixup_conv2d_backprop(op, arch):
+ if op.type == "Conv2DBackpropInput":
+ # flip the inputs
+ op.inputs[0], op.inputs[2] = op.inputs[2], op.inputs[0]
+ op.type = "Conv2DBackpropInputSwitched"
+
+ return op
+
+
+def fixup_fully_connected_input(op, arch):
+ if op.type == "FullyConnectedAct":
+ inp = op.inputs[0]
+ weights = op.inputs[1]
+
+ n_in_elems = weights.shape[-2]
+ elms = inp.elements()
+ batch_size = elms // n_in_elems
+ assert batch_size * n_in_elems == elms
+
+ desired_shape = [batch_size, n_in_elems]
+ if inp.shape != desired_shape:
+ # mismatch, insert a reshape to fix this.
+ reshape_name = op.name + "_reshape"
+ new_shape_tens = Tensor([1], DataType.int32, reshape_name + "_shape")
+ new_shape_tens.values = np.array(desired_shape)
+ new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
+ new_shape_tens.ops = [new_shape_tens_const]
+ new_shape_tens_const.outputs = [new_shape_tens]
+
+ reshape_op = Operation("Reshape", reshape_name)
+ reshape_op.inputs = [inp, new_shape_tens]
+ reshape_op.attrs["new_shape"] = desired_shape
+ reshape_out = inp.clone("_reshaped")
+ reshape_out.shape = reshape_out.storage_shape = reshape_out.bandwidth_shape = desired_shape
+ reshape_out.ops = [reshape_op]
+ reshape_op.outputs = [reshape_out]
+
+ op.inputs[0] = reshape_out
+
+ return op
+
+
+def fixup_pack_input(op, arch):
+ if op.type == "Pack":
+ # Pack is also referred to as Stack
+ # Requires the rewrite_concat function to be called on the op afterwards
+ axis = int(op.attrs["axis"])
+ desired_shape = op.inputs[0].shape[:axis] + [1] + op.inputs[0].shape[axis:]
+
+ # Construct 1 shape tensor to be used by all inserted reshape ops
+ new_shape_name = op.name + "_reshape_shape"
+ new_shape_tens = Tensor([1], DataType.int32, new_shape_name)
+ new_shape_tens.values = np.array(desired_shape)
+ new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
+ new_shape_tens.ops = [new_shape_tens_const]
+ new_shape_tens_const.outputs = [new_shape_tens]
+
+ for idx, inp in enumerate(op.inputs):
+ reshape_name = op.name + str(idx) + "_reshape"
+ reshape_op = Operation("Reshape", reshape_name)
+ reshape_op.inputs = [inp, new_shape_tens]
+ reshape_op.attrs["new_shape"] = desired_shape
+ reshape_out = inp.clone("_reshaped")
+ reshape_out.shape = reshape_out.storage_shape = reshape_out.bandwidth_shape = desired_shape
+ reshape_out.ops = [reshape_op]
+ reshape_op.outputs = [reshape_out]
+
+ op.inputs[idx] = reshape_out
+
+ op.type = "PackReshaped"
+
+ return op
+
+
+def fixup_unpack_output(tens, arch):
+ op = tens.ops[0]
+ if op.type in set(("Unpack", "StridedSlice")):
+ # Unpack is also referred to as Unstack
+ # Requires the rewrite_split function to be called on the op afterwards
+ if op.type == "StridedSlice":
+ shrink_axis_mask = op.attrs["shrink_axis_mask"]
+ if shrink_axis_mask == 0:
+ # Equal Rank StridedSlice, no need to insert reshape
+ return tens
+
+ # Only allow shrinking 1 axis for now
+ assert shrink_axis_mask & (shrink_axis_mask - 1) == 0
+ assert len(tens.shape) == (len(op.inputs[0].shape) - 1)
+
+ axis = int(math.log2(shrink_axis_mask))
+ op.attrs["shrink_axis_mask"] = 0
+ else:
+ axis = int(op.attrs["axis"])
+ op.type = "UnpackReshaped"
+
+ desired_shape = tens.shape[:axis] + [1] + tens.shape[axis:]
+
+ # Construct 1 shape tensor to be used by all inserted reshape ops
+ new_shape_name = op.name + "_reshape_shape"
+ new_shape_tens = Tensor([1], DataType.int32, new_shape_name)
+ new_shape_tens.values = np.array(tens.shape)
+ new_shape_tens_const = Operation("Const", new_shape_tens.name + "_const")
+ new_shape_tens.ops = [new_shape_tens_const]
+ new_shape_tens_const.outputs = [new_shape_tens]
+
+ for idx, out_tens in enumerate(op.outputs):
+ reshape_name = op.name + str(idx) + "_reshape"
+ reshape_op = Operation("Reshape", reshape_name)
+ reshape_op.outputs = [out_tens]
+ reshape_in = out_tens.clone("_reshaped")
+ reshape_in.shape = reshape_in.storage_shape = reshape_in.bandwidth_shape = desired_shape
+ reshape_in.ops = [op]
+ out_tens.ops = [reshape_op]
+ reshape_op.inputs = [reshape_in, new_shape_tens]
+
+ op.outputs[idx] = reshape_in
+
+ return tens
+
+
+def add_padding_fields(op, arch):
+ if "padding" in op.attrs:
+ if "Conv" in op.type:
+ kernel_size = op.inputs[1].shape[:2]
+ input_shape = op.inputs[0].shape
+ elif "Pool" in op.type:
+ kernel_size = op.attrs["ksize"][1:3]
+ input_shape = op.inputs[0].shape
+ elif op.type == "ExtractImagePatches":
+ kernel_size = op.attrs["ksizes"][1:3]
+ input_shape = op.inputs[0].shape
+ else:
+ assert 0, "Unknown operation that uses padding"
+
+ padding, skirt = calc_padding_and_skirt(op.attrs["padding"], kernel_size, op.attrs["strides"], input_shape)
+ op.attrs["explicit_padding"] = padding
+ op.attrs["skirt"] = skirt
+ return op
+
+
+conv_op = set(("Conv2D", "QuantizedConv2D", "Conv2DBackpropInputSwitched", "Conv2DBiasAct"))
+fc_op = set(
+ (
+ "MatMul",
+ "QuantizedMatMul",
+ "BlockLSTM",
+ "RnnAct",
+ "UnidirectionalSequenceRnnAct",
+ "BidirectionalSequenceRnnAct",
+ "LstmAct",
+ "UnidirectionalSequenceLstmAct",
+ "BidirectionalSequenceLstmAct",
+ "FullyConnectedAct",
+ )
+)
+depthwise_op = set(("DepthwiseConv2dNative", "DepthwiseConv2dBiasAct",))
+pool_op = set(("AvgPool", "MaxPool", "QuantizedAvgPool", "QuantizedMaxPool", "AvgPoolAct", "MaxPoolAct"))
+elementwise_op = set(("AddAct", "MulAct", "SubAct", "Maximum", "Minimum", "LeakyRelu", "Abs"))
+activation_ops = set(("Relu", "Relu6", "ReluN1To1", "Sigmoid", "Tanh"))
+memory_only_ops = set(("Reshape",))
+
+# Check if the op can be reordered
+def get_prepend_op(op):
+ inp = op.inputs[0]
+ # The op should be reordered between prev_op and prep_op
+ prev_op = inp.ops[-1]
+ prep_op = None
+ while prev_op.type in memory_only_ops and len(prev_op.outputs) == 1 and len(prev_op.outputs[0].consumers()) == 1:
+ prep_op = prev_op
+ inp = prev_op.inputs[0]
+ prev_op = inp.ops[-1]
+ if prev_op != None and len(prev_op.outputs) == 1 and len(prev_op.outputs[0].consumers()) == 1:
+ return prep_op
+
+ return None
+
+
+def mark_npu_block_type(op, arch):
+ npu_block_type = NpuBlockType.Default
+ if op.type in conv_op:
+ npu_block_type = NpuBlockType.ConvolutionMxN
+ elif op.type in fc_op:
+ npu_block_type = NpuBlockType.VectorProduct
+ elif op.type in depthwise_op:
+ npu_block_type = NpuBlockType.ConvolutionDepthWise
+ elif op.type in pool_op:
+ npu_block_type = NpuBlockType.Pooling
+ elif op.type in elementwise_op:
+ npu_block_type = NpuBlockType.ElementWise
+
+ op.attrs["npu_block_type"] = npu_block_type
+ return op
+
+
+def convert_depthwise_to_conv(op, arch):
+ # Depthwise is equivalent to a single conv2d if the ifm depth is 1 and
+ # the ofm depth equals the depth multipler.
+ # If those conditions are true, then we can perform a simple
+ # switch of the operator type (and weight order)
+
+ if ("DepthwiseConv2d" in op.type) and (op.attrs["depth_multiplier"] != 1):
+ ifm_tensor = op.inputs[0]
+ weight_tensor = op.inputs[1]
+ ofm_tensor = op.outputs[0]
+ if (ifm_tensor.shape[3] == 1) and (ofm_tensor.shape[3] == op.attrs["depth_multiplier"]):
+ # Change op type to Conv2d
+ op.type = op.type.replace("DepthwiseConv2d", "Conv2D")
+ del op.attrs["channel_multiplier"]
+ del op.attrs["depth_multiplier"]
+
+ weight_tensor.quant_values = np.transpose(weight_tensor.quant_values, (0, 1, 3, 2))
+ weight_tensor.shape = weight_tensor.storage_shape = weight_tensor.bandwidth_shape = list(
+ weight_tensor.quant_values.shape
+ )
+ else:
+ print(
+ "Error: Unsupported DepthwiseConv2d with depth_multiplier = {0}, "
+ "ifm channels = {1}, ofm channels = {2}".format(
+ op.attrs["depth_multiplier"], ifm_tensor.shape[3], ofm_tensor.shape[3]
+ )
+ )
+ assert False
+ return op
+
+
+# Reorder activation op if it's after the memory only operations
+def fixup_act_reorder(op, arch):
+ if op.type in activation_ops:
+ prep_op = get_prepend_op(op)
+ if prep_op != None:
+ act_op = op.clone("_reordered")
+ act_op.inputs = [prep_op.inputs[0]]
+ act_op_out = act_op.inputs[0].clone("_acted")
+ act_op_out.quantization = op.outputs[0].quantization.clone()
+ act_op_out.ops = [act_op]
+ act_op.outputs = [act_op_out]
+ prep_op.inputs[0] = act_op_out
+ prep_op.outputs[0].quantization = act_op_out.quantization.clone()
+
+ # Mark the op so that it will be removed as passthrough later on
+ op.type = "Identity"
+ return op
+
+
+def convert_mul_max_to_abs_or_lrelu(op, arch):
+ """Whenever there is a subgraph with this topology:
+
+ Input X For X = -1 or X > 0
+ | \ / This subgraph can be replaced with either
+ | Mul an Abs (if X = -1) or a LeakyReLU (if X > 0)
+ | /
+ Max
+ """
+
+ if op.type == "Maximum":
+ # finds the Mul input(s) to the Max
+ muls = [i for i in op.inputs if i.ops[0].type == "MulAct"]
+ if len(muls) == 1:
+ mul = muls[0].ops[0]
+ elif len(muls) == 2:
+ # In the case both inputs are Muls, find the one with the same input as the Max
+ mul = [m for m in muls if len(set(op.inputs + m.ops[0].inputs)) == 1][0].ops[0]
+ else:
+ # No Mul inputs
+ return op
+
+ # make sure the Mul doesn't have any other consumers
+ if len(mul.outputs[0].consumers()) != 1:
+ return op
+ # make sure the Mul doesn't have a faf
+ if mul.attrs["fused_activation_function"]:
+ return op
+
+ # finds the branched input that goes to both the Max and the Mul
+ shared = set(op.inputs) & set(mul.inputs)
+ if len(shared) == 1:
+ shared_in = shared.pop()
+ # find the constant scalar input to the Mul
+ const_tens = (set(mul.inputs) - {shared_in}).pop()
+ # check that it is a scalar
+ if const_tens.shape != []:
+ return op
+ const = const_tens.ops[0]
+ # check that it is a constant
+ if const.type != "Const":
+ return op
+ else:
+ return op
+
+ val = const.outputs[0].values
+ if val >= 0:
+ new_op = "LeakyRelu"
+ op.attrs["alpha"] = val
+ elif val == -1:
+ new_op = "Abs"
+ else:
+ return op
+
+ op.type = op.type.replace("Maximum", new_op)
+ op.name = op.name.replace("Maximum", new_op)
+ op.outputs[0].name = op.outputs[0].name.replace("Maximum", new_op)
+ op.inputs = [shared_in]
+ return op
+
+
+def supported_operator_check(op, arch):
+ op.run_on_npu = arch.supported_operators.is_operator_supported(op)
+ return op
+
+
+def optimise_graph_a(nng, arch, verbose_graph=False):
+ if verbose_graph:
+ nng.print_graph()
+
+ op_rewrite_list = [
+ # mark block type and check if the operations are supported
+ mark_npu_block_type,
+ supported_operator_check,
+ # then do any rewrites of supported operators
+ convert_depthwise_to_conv,
+ fixup_fully_connected_input,
+ fixup_pack_input,
+ fixup_conv2d_backprop,
+ fixup_act_reorder,
+ add_padding_fields,
+ mark_npu_block_type,
+ # convert_mul_max_to_abs_or_lrelu # TODO: enable optimisation once quantisation issues are resolved
+ ]
+
+ for idx, sg in enumerate(nng.subgraphs):
+ # rewrite graph pass
+ nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
+ sg, arch, [fixup_unpack_output,], op_rewrite_list, rewrite_unsupported=False
+ )
+
+ for idx, sg in enumerate(nng.subgraphs):
+ # remove passthrough tensors
+ nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(sg, arch, [remove_passthrough_tensor,], [])
+
+ if verbose_graph:
+ nng.print_graph()
+ return nng
+
+def optimise_graph_b(nng, arch, verbose_graph=False):
+ if verbose_graph:
+ nng.print_graph()
+
+ for idx, sg in enumerate(nng.subgraphs):
+ # combined rewrite graph pass
+ nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(sg, arch, [rewrite_concat, rewrite_split,], [])
+
+ if verbose_graph:
+ nng.print_graph()
+ return nng