// // Copyright © 2017 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // #include "ClMeanWorkload.hpp" #include #include #include "ClWorkloadUtils.hpp" namespace { void ConvertArmnnAxesToAclCoordinates(size_t inputDimensions, unsigned int originalInputRank, const std::vector& armnnAxes, arm_compute::Coordinates& outAclCoords) { if (armnnAxes.empty()) { // If no reduction axes were provided, then the input must be reduced along all dimensions. // Since arm_compute::CLReduceMean does not accept an empty vector as the reduction dimensions, we then // manually create a vector including all the input dimensions (in reversed order) as: // // { inputDimensions - 1, inputDimensions - 2, ..., 1, 0 } // outAclCoords.set_num_dimensions(inputDimensions); std::generate(outAclCoords.begin(), outAclCoords.end(), [d = inputDimensions - 1] () mutable { return d--; }); } else { // Create a vector of reduction dimensions (in reversed order) with the given reduction axes. // // Adjust the given reduction axes according to the original rank of the input tensor (before ACL applied any // dimension correction). // For example, if the input tensor originally had 4 dimensions, and one of the reduction axes was 2, then the // new value for that reduction axis should be 1. // // Example: // ArmNN input shape = { 1, 1, 3, 2 } -> ACL input shape = { 2, 3 } // ArmNN reduction axis = { 2 } -> ACL reduction axis = { 1 } // ArmNN reduction axis = { 3 } -> ACL reduction axis = { 0 } // // The transformation: ACL reduction axis index = original rank - ArmNN reduction axis index - 1 // outAclCoords.set_num_dimensions(armnnAxes.size()); std::transform(armnnAxes.begin(), armnnAxes.end(), outAclCoords.begin(), [originalInputRank](unsigned int i){ return originalInputRank - i - 1; }); } } } // anonymous namespace namespace armnn { using namespace armcomputetensorutils; arm_compute::Status ClMeanValidate(const TensorInfo& input, const TensorInfo& output, const MeanDescriptor& desc) { const arm_compute::TensorInfo aclInputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(input); const arm_compute::TensorInfo aclOutputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(output); arm_compute::Coordinates coords; ConvertArmnnAxesToAclCoordinates(aclInputInfo.num_dimensions(), input.GetNumDimensions(), desc.m_Axis, coords); return arm_compute::CLReduceMean::validate(&aclInputInfo, coords, desc.m_KeepDims, &aclOutputInfo); } ClMeanWorkload::ClMeanWorkload(const MeanQueueDescriptor& descriptor, const WorkloadInfo& info) : BaseWorkload(descriptor, info) { m_Data.ValidateInputsOutputs("ClMeanWorkload", 1, 1); arm_compute::ICLTensor& input = static_cast(m_Data.m_Inputs[0])->GetTensor(); arm_compute::ICLTensor& output = static_cast(m_Data.m_Outputs[0])->GetTensor(); arm_compute::Coordinates coords; ConvertArmnnAxesToAclCoordinates(input.info()->num_dimensions(), info.m_InputTensorInfos[0].GetNumDimensions(), m_Data.m_Parameters.m_Axis, coords); m_Layer.configure(&input, coords, m_Data.m_Parameters.m_KeepDims, &output); } void ClMeanWorkload::Execute() const { ARMNN_SCOPED_PROFILING_EVENT_CL("ClMeanWorkload_Execute"); m_Layer.run(); } } //namespace armnn