// // Copyright © 2020, 2023-2024 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include "TestUtils.hpp" #include #include #include namespace { template std::vector CreateConv2dTfLiteModel(tflite::BuiltinOperator convolutionOperatorCode, tflite::TensorType tensorType, uint32_t strideX, uint32_t strideY, uint32_t dilationX, uint32_t dilationY, tflite::Padding padding, tflite::ActivationFunctionType fused_activation_function, const std::vector & inputTensorShape, const std::vector & filterTensorShape, const std::vector & biasTensorShape, const std::vector & outputTensorShape, const std::vector & filterData, const std::vector & biasData, const std::vector biasScales = {1.0f}, const std::vector biasOffsets = {0}, const std::vector filterScales = {1.0f}, const std::vector filterOffsets = {0}, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, int32_t depth_multiplier = 1, int32_t filterQuantizationDim = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::array, 5> buffers; buffers[0] = CreateBuffer(flatBufferBuilder); buffers[1] = CreateBuffer(flatBufferBuilder); buffers[2] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(filterData.data()), sizeof(T) * filterData.size())); buffers[3] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(biasData.data()), sizeof(B) * biasData.size())); buffers[4] = CreateBuffer(flatBufferBuilder); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); auto outputQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ outputQuantScale }), flatBufferBuilder.CreateVector({ outputQuantOffset })); auto filterQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector(filterScales), flatBufferBuilder.CreateVector(filterOffsets), tflite::QuantizationDetails_NONE, 0, filterQuantizationDim); auto biasQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector(biasScales), flatBufferBuilder.CreateVector(biasOffsets)); std::array, 4> tensors; tensors[0] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(inputTensorShape.data(), inputTensorShape.size()), tensorType, 1, flatBufferBuilder.CreateString("input"), quantizationParameters); tensors[1] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(filterTensorShape.data(), filterTensorShape.size()), tensorType, 2, flatBufferBuilder.CreateString("filter"), filterQuantizationParameters); auto biasTensorType = ::tflite::TensorType_FLOAT32; if (tensorType == ::tflite::TensorType_INT8 || tensorType == ::tflite::TensorType_UINT8) { biasTensorType = ::tflite::TensorType_INT32; } tensors[2] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(biasTensorShape.data(), biasTensorShape.size()), biasTensorType, 3, flatBufferBuilder.CreateString("bias"), biasQuantizationParameters); tensors[3] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 4, flatBufferBuilder.CreateString("output"), outputQuantizationParameters); flatbuffers::Offset operatorBuiltinOptions; tflite::BuiltinOptions operatorBuiltinOptionsType; if(convolutionOperatorCode == tflite::BuiltinOperator_DEPTHWISE_CONV_2D) { operatorBuiltinOptionsType = tflite::BuiltinOptions_DepthwiseConv2DOptions; operatorBuiltinOptions = CreateDepthwiseConv2DOptions(flatBufferBuilder, padding, strideX, strideY, depth_multiplier, fused_activation_function, dilationX, dilationY).Union(); } if(convolutionOperatorCode == tflite::BuiltinOperator_CONV_2D) { operatorBuiltinOptionsType = tflite::BuiltinOptions_Conv2DOptions; operatorBuiltinOptions = CreateConv2DOptions(flatBufferBuilder, padding, strideX, strideY, fused_activation_function, dilationX, dilationY).Union(); } // create operator const std::vector operatorInputs{0, 1, 2}; const std::vector operatorOutputs{3}; flatbuffers::Offset convolutionOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); const std::vector subgraphInputs{0, 1, 2}; const std::vector subgraphOutputs{3}; flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&convolutionOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Convolution2d Operator Model"); flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, convolutionOperatorCode); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } template void ConvolutionTest(tflite::BuiltinOperator convolutionOperatorCode, tflite::TensorType tensorType, uint32_t strideX, uint32_t strideY, uint32_t dilationX, uint32_t dilationY, tflite::Padding padding, tflite::ActivationFunctionType fused_activation_function, std::vector& inputShape, std::vector& filterShape, std::vector& outputShape, std::vector& inputValues, std::vector& filterValues, std::vector& expectedOutputValues, const std::vector& biasShape = {}, const std::vector& biasValues = {}, const std::vector biasScales = {1.0f}, const std::vector biasOffsets = {0}, const std::vector filterScales = {1.0f}, const std::vector filterOffsets = {0}, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, int32_t depth_multiplier = 1, int32_t filterQuantizationDim = 3, const std::vector& backends = {}) { using namespace delegateTestInterpreter; std::vector modelBuffer; modelBuffer = CreateConv2dTfLiteModel(convolutionOperatorCode, tensorType, strideX, strideY, dilationX, dilationY, padding, fused_activation_function, inputShape, filterShape, biasShape, outputShape, filterValues, biasValues, biasScales, biasOffsets, filterScales, filterOffsets, outputQuantScale, outputQuantOffset, quantScale, quantOffset, depth_multiplier, filterQuantizationDim); // Setup interpreter with just TFLite Runtime. auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer); CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk); CHECK(tfLiteInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk); CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk); std::vector tfLiteOutputValues = tfLiteInterpreter.GetOutputResult(0); std::vector tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0); // Setup interpreter with Arm NN Delegate applied. auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends)); CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk); CHECK(armnnInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk); CHECK(armnnInterpreter.Invoke() == kTfLiteOk); std::vector armnnOutputValues = armnnInterpreter.GetOutputResult(0); std::vector armnnOutputShape = armnnInterpreter.GetOutputShape(0); armnnDelegate::CompareOutputData(tfLiteOutputValues, armnnOutputValues, expectedOutputValues); armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape); tfLiteInterpreter.Cleanup(); armnnInterpreter.Cleanup(); } // Conv3d is only correctly supported for external delegates from TF Lite v2.6, as there was a breaking bug in v2.5. #if defined(ARMNN_POST_TFLITE_2_5) template std::vector CreateConv3dTfLiteModel(tflite::BuiltinOperator convolutionOperatorCode, tflite::TensorType tensorType, std::vector strides, std::vector dilation, tflite::Padding padding, tflite::ActivationFunctionType fused_activation_function, const std::vector& inputTensorShape, const std::vector& filterTensorShape, const std::vector& biasTensorShape, const std::vector& outputTensorShape, const std::vector& filterData, const std::vector& biasData, const std::vector biasScales = {1.0f}, const std::vector biasOffsets = {0}, const std::vector filterScales = {1.0f}, const std::vector filterOffsets = {0}, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, int32_t depth_multiplier = 1, int32_t filterQuantizationDim = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::array, 3> buffers; buffers[0] = CreateBuffer(flatBufferBuilder); buffers[1] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(filterData.data()), sizeof(T) * filterData.size())); buffers[2] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(biasData.data()), sizeof(B) * biasData.size())); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); auto outputQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ outputQuantScale }), flatBufferBuilder.CreateVector({ outputQuantOffset })); auto filterQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector(filterScales), flatBufferBuilder.CreateVector(filterOffsets), tflite::QuantizationDetails_NONE, 0, filterQuantizationDim); auto biasQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector(biasScales), flatBufferBuilder.CreateVector(biasOffsets)); std::array, 4> tensors; tensors[0] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(inputTensorShape.data(), inputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input"), quantizationParameters); tensors[1] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(filterTensorShape.data(), filterTensorShape.size()), tensorType, 1, flatBufferBuilder.CreateString("filter"), filterQuantizationParameters); auto biasTensorType = ::tflite::TensorType_FLOAT32; if (tensorType == ::tflite::TensorType_INT8 || tensorType == ::tflite::TensorType_UINT8) { biasTensorType = ::tflite::TensorType_INT32; } tensors[2] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(biasTensorShape.data(), biasTensorShape.size()), biasTensorType, 2, flatBufferBuilder.CreateString("bias"), biasQuantizationParameters); tensors[3] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("output"), outputQuantizationParameters); tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_Conv3DOptions; flatbuffers::Offset operatorBuiltinOptions = CreateConv3DOptions(flatBufferBuilder, padding, strides[2], // Depth strides[0], // Width strides[1], // Height fused_activation_function, dilation[2], dilation[0], dilation[1]).Union(); // Create operator const std::vector operatorInputs{0, 1, 2}; const std::vector operatorOutputs{3}; flatbuffers::Offset convolutionOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); const std::vector subgraphInputs{0, 1, 2}; const std::vector subgraphOutputs{3}; flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&convolutionOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Convolution 3d Operator Model"); // If using an operator with a code greater than 127 then the enum value should be passed as the fifth // parameter rather than the second like in other tests. flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, 0, 0, 1, tflite::BuiltinOperator_CONV_3D); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } template void Convolution3dTest(tflite::BuiltinOperator convolutionOperatorCode, tflite::TensorType tensorType, std::vector strides, std::vector dilation, tflite::Padding padding, tflite::ActivationFunctionType fused_activation_function, std::vector& inputShape, std::vector& filterShape, std::vector& outputShape, std::vector& inputValues, std::vector& filterValues, std::vector& expectedOutputValues, const std::vector& biasShape = {}, const std::vector& biasValues = {}, const std::vector biasScales = {1.0f}, const std::vector biasOffsets = {0}, const std::vector filterScales = {1.0f}, const std::vector filterOffsets = {0}, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, int32_t depth_multiplier = 1, int32_t filterQuantizationDim = 3, const std::vector& backends = {}) { using namespace delegateTestInterpreter; std::vector modelBuffer; modelBuffer = CreateConv3dTfLiteModel(convolutionOperatorCode, tensorType, strides, dilation, padding, fused_activation_function, inputShape, filterShape, biasShape, outputShape, filterValues, biasValues, biasScales, biasOffsets, filterScales, filterOffsets, outputQuantScale, outputQuantOffset, quantScale, quantOffset, depth_multiplier, filterQuantizationDim); // Setup interpreter with just TFLite Runtime. auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer); CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk); CHECK(tfLiteInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk); CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk); std::vector tfLiteOutputValues = tfLiteInterpreter.GetOutputResult(0); std::vector tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0); // Setup interpreter with Arm NN Delegate applied. auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends)); CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk); CHECK(armnnInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk); CHECK(armnnInterpreter.Invoke() == kTfLiteOk); std::vector armnnOutputValues = armnnInterpreter.GetOutputResult(0); std::vector armnnOutputShape = armnnInterpreter.GetOutputShape(0); armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape); armnnDelegate::CompareData(expectedOutputValues.data(), armnnOutputValues.data(), expectedOutputValues.size(), 1); armnnDelegate::CompareData(expectedOutputValues.data(), tfLiteOutputValues.data(), expectedOutputValues.size(), 1); armnnDelegate::CompareData(tfLiteOutputValues.data(), armnnOutputValues.data(), expectedOutputValues.size(), 1); tfLiteInterpreter.Cleanup(); armnnInterpreter.Cleanup(); } #endif template std::vector CreateTransposeConvTfLiteModel(tflite::TensorType tensorType, uint32_t strideX, uint32_t strideY, tflite::Padding padding, const std::vector & transposeTensorShape, const std::vector & filterTensorShape, const std::vector & inputTensorShape, const std::vector & outputTensorShape, const std::vector & transposeData, const std::vector & filterData, float filterScale = 1.0f, int filterOffset = 0, float outputQuantScale = 2.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::array, 3> buffers; buffers[0] = CreateBuffer(flatBufferBuilder); buffers[1] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(transposeData.data()), sizeof(int32_t) * transposeData.size())); buffers[2] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(reinterpret_cast(filterData.data()), sizeof(T) * filterData.size())); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); auto outputQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ outputQuantScale }), flatBufferBuilder.CreateVector({ outputQuantOffset })); auto filterQuantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ filterScale }), flatBufferBuilder.CreateVector({ filterOffset })); std::array, 4> tensors; tensors[0] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(transposeTensorShape.data(), transposeTensorShape.size()), tflite::TensorType_INT32, 1); tensors[1] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(filterTensorShape.data(), filterTensorShape.size()), tensorType, 2, flatBufferBuilder.CreateString("filter"), filterQuantizationParameters); tensors[2] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(inputTensorShape.data(), inputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input"), quantizationParameters); tensors[3] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("output"), outputQuantizationParameters); tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_TransposeConvOptions; flatbuffers::Offset operatorBuiltinOptions = CreateTransposeConvOptions(flatBufferBuilder, padding, strideX, strideY).Union(); // create operator const std::vector operatorInputs{0, 1, 2}; const std::vector operatorOutputs{3}; flatbuffers::Offset convolutionOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); const std::vector subgraphInputs{0, 1, 2}; const std::vector subgraphOutputs{3}; flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&convolutionOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: TransposeConv Operator Model"); flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_TRANSPOSE_CONV); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } template void TransposeConvTest(tflite::TensorType tensorType, uint32_t strideX, uint32_t strideY, tflite::Padding padding, const std::vector & transposeTensorShape, const std::vector & filterTensorShape, const std::vector & inputTensorShape, const std::vector & outputTensorShape, const std::vector & transposeData, const std::vector & filterData, std::vector& inputValues, std::vector& expectedOutputValues, float filterScale = 1.0f, int filterOffset = 0, float outputQuantScale = 1.0f, int outputQuantOffset = 0, float quantScale = 1.0f, int quantOffset = 0, const std::vector& backends = {}) { using namespace delegateTestInterpreter; std::vector modelBuffer; modelBuffer = CreateTransposeConvTfLiteModel(tensorType, strideX, strideY, padding, transposeTensorShape, filterTensorShape, inputTensorShape, outputTensorShape, transposeData, filterData, filterScale, filterOffset, outputQuantScale, outputQuantOffset, quantScale, quantOffset); // Setup interpreter with just TFLite Runtime. auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer); CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk); CHECK(tfLiteInterpreter.FillInputTensor(inputValues, 2) == kTfLiteOk); CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk); std::vector tfLiteOutputValues = tfLiteInterpreter.GetOutputResult(0); std::vector tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0); // Setup interpreter with Arm NN Delegate applied. auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends)); CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk); CHECK(armnnInterpreter.FillInputTensor(inputValues, 2) == kTfLiteOk); CHECK(armnnInterpreter.Invoke() == kTfLiteOk); std::vector armnnOutputValues = armnnInterpreter.GetOutputResult(0); std::vector armnnOutputShape = armnnInterpreter.GetOutputShape(0); armnnDelegate::CompareOutputData(tfLiteOutputValues, armnnOutputValues, expectedOutputValues); armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputTensorShape); tfLiteInterpreter.Cleanup(); armnnInterpreter.Cleanup(); } } // anonymous namespace