// // Copyright © 2020 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include #include #include #include #include #include #include #include namespace { std::vector CreateElementwiseBinaryTfLiteModel(tflite::BuiltinOperator binaryOperatorCode, tflite::ActivationFunctionType activationType, tflite::TensorType tensorType, const std::vector & input0TensorShape, const std::vector & input1TensorShape, const std::vector & outputTensorShape, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; flatbuffers::FlatBufferBuilder flatBufferBuilder; std::vector> buffers; buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({}))); auto quantizationParameters = CreateQuantizationParameters(flatBufferBuilder, 0, 0, flatBufferBuilder.CreateVector({ quantScale }), flatBufferBuilder.CreateVector({ quantOffset })); std::array, 3> tensors; tensors[0] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(input0TensorShape.data(), input0TensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input_0"), quantizationParameters); tensors[1] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(input1TensorShape.data(), input1TensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("input_1"), quantizationParameters); tensors[2] = CreateTensor(flatBufferBuilder, flatBufferBuilder.CreateVector(outputTensorShape.data(), outputTensorShape.size()), tensorType, 0, flatBufferBuilder.CreateString("output"), quantizationParameters); // create operator tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE; flatbuffers::Offset operatorBuiltinOptions = 0; switch (binaryOperatorCode) { case BuiltinOperator_ADD: { operatorBuiltinOptionsType = BuiltinOptions_AddOptions; operatorBuiltinOptions = CreateAddOptions(flatBufferBuilder, activationType).Union(); break; } case BuiltinOperator_DIV: { operatorBuiltinOptionsType = BuiltinOptions_DivOptions; operatorBuiltinOptions = CreateDivOptions(flatBufferBuilder, activationType).Union(); break; } case BuiltinOperator_MAXIMUM: { operatorBuiltinOptionsType = BuiltinOptions_MaximumMinimumOptions; operatorBuiltinOptions = CreateMaximumMinimumOptions(flatBufferBuilder).Union(); break; } case BuiltinOperator_MINIMUM: { operatorBuiltinOptionsType = BuiltinOptions_MaximumMinimumOptions; operatorBuiltinOptions = CreateMaximumMinimumOptions(flatBufferBuilder).Union(); break; } case BuiltinOperator_MUL: { operatorBuiltinOptionsType = BuiltinOptions_MulOptions; operatorBuiltinOptions = CreateMulOptions(flatBufferBuilder, activationType).Union(); break; } case BuiltinOperator_SUB: { operatorBuiltinOptionsType = BuiltinOptions_SubOptions; operatorBuiltinOptions = CreateSubOptions(flatBufferBuilder, activationType).Union(); break; } default: break; } const std::vector operatorInputs{0, 1}; const std::vector operatorOutputs{2}; flatbuffers::Offset elementwiseBinaryOperator = CreateOperator(flatBufferBuilder, 0, flatBufferBuilder.CreateVector(operatorInputs.data(), operatorInputs.size()), flatBufferBuilder.CreateVector(operatorOutputs.data(), operatorOutputs.size()), operatorBuiltinOptionsType, operatorBuiltinOptions); const std::vector subgraphInputs{0, 1}; const std::vector subgraphOutputs{2}; flatbuffers::Offset subgraph = CreateSubGraph(flatBufferBuilder, flatBufferBuilder.CreateVector(tensors.data(), tensors.size()), flatBufferBuilder.CreateVector(subgraphInputs.data(), subgraphInputs.size()), flatBufferBuilder.CreateVector(subgraphOutputs.data(), subgraphOutputs.size()), flatBufferBuilder.CreateVector(&elementwiseBinaryOperator, 1)); flatbuffers::Offset modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Elementwise Binary Operator Model"); flatbuffers::Offset operatorCode = CreateOperatorCode(flatBufferBuilder, binaryOperatorCode); flatbuffers::Offset flatbufferModel = CreateModel(flatBufferBuilder, TFLITE_SCHEMA_VERSION, flatBufferBuilder.CreateVector(&operatorCode, 1), flatBufferBuilder.CreateVector(&subgraph, 1), modelDescription, flatBufferBuilder.CreateVector(buffers.data(), buffers.size())); flatBufferBuilder.Finish(flatbufferModel); return std::vector(flatBufferBuilder.GetBufferPointer(), flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize()); } template void ElementwiseBinaryTest(tflite::BuiltinOperator binaryOperatorCode, tflite::ActivationFunctionType activationType, tflite::TensorType tensorType, std::vector& backends, std::vector& input0Shape, std::vector& input1Shape, std::vector& outputShape, std::vector& input0Values, std::vector& input1Values, std::vector& expectedOutputValues, float quantScale = 1.0f, int quantOffset = 0) { using namespace tflite; std::vector modelBuffer = CreateElementwiseBinaryTfLiteModel(binaryOperatorCode, activationType, tensorType, input0Shape, input1Shape, outputShape, quantScale, quantOffset); const Model* tfLiteModel = GetModel(modelBuffer.data()); // Create TfLite Interpreters std::unique_ptr armnnDelegateInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&armnnDelegateInterpreter) == kTfLiteOk); CHECK(armnnDelegateInterpreter != nullptr); CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk); std::unique_ptr tfLiteInterpreter; CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver()) (&tfLiteInterpreter) == kTfLiteOk); CHECK(tfLiteInterpreter != nullptr); CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk); // Create the ArmNN Delegate armnnDelegate::DelegateOptions delegateOptions(backends); std::unique_ptr theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions), armnnDelegate::TfLiteArmnnDelegateDelete); CHECK(theArmnnDelegate != nullptr); // Modify armnnDelegateInterpreter to use armnnDelegate CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk); // Set input data auto tfLiteDelegateInput0Id = tfLiteInterpreter->inputs()[0]; auto tfLiteDelageInput0Data = tfLiteInterpreter->typed_tensor(tfLiteDelegateInput0Id); for (unsigned int i = 0; i < input0Values.size(); ++i) { tfLiteDelageInput0Data[i] = input0Values[i]; } auto tfLiteDelegateInput1Id = tfLiteInterpreter->inputs()[1]; auto tfLiteDelageInput1Data = tfLiteInterpreter->typed_tensor(tfLiteDelegateInput1Id); for (unsigned int i = 0; i < input1Values.size(); ++i) { tfLiteDelageInput1Data[i] = input1Values[i]; } auto armnnDelegateInput0Id = armnnDelegateInterpreter->inputs()[0]; auto armnnDelegateInput0Data = armnnDelegateInterpreter->typed_tensor(armnnDelegateInput0Id); for (unsigned int i = 0; i < input0Values.size(); ++i) { armnnDelegateInput0Data[i] = input0Values[i]; } auto armnnDelegateInput1Id = armnnDelegateInterpreter->inputs()[1]; auto armnnDelegateInput1Data = armnnDelegateInterpreter->typed_tensor(armnnDelegateInput1Id); for (unsigned int i = 0; i < input1Values.size(); ++i) { armnnDelegateInput1Data[i] = input1Values[i]; } // Run EnqueWorkload CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk); CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk); // Compare output data auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0]; auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor(tfLiteDelegateOutputId); auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0]; auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor(armnnDelegateOutputId); for (size_t i = 0; i < expectedOutputValues.size(); i++) { CHECK(expectedOutputValues[i] == armnnDelegateOutputData[i]); CHECK(tfLiteDelageOutputData[i] == expectedOutputValues[i]); CHECK(tfLiteDelageOutputData[i] == armnnDelegateOutputData[i]); } armnnDelegateInterpreter.reset(nullptr); } } // anonymous namespace