// // Copyright © 2024 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include namespace armnnOpaqueDelegate { TfLiteStatus ValidateScatterNdOperator(DelegateData& delegateData, TfLiteOpaqueContext *tfLiteContext, const armnn::TensorInfo& indicesInfo, const armnn::TensorInfo& updatesInfo, const armnn::TensorInfo& shapeInfo, const armnn::TensorInfo& outputInfo, const armnn::ScatterNdDescriptor& descriptor) { bool isSupported = false; FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("SCATTER_ND", tfLiteContext, IsScatterNdSupported, delegateData.m_Backends, isSupported, armnn::BackendId(), shapeInfo, indicesInfo, updatesInfo, outputInfo, descriptor); return isSupported ? kTfLiteOk : kTfLiteError; } TfLiteStatus VisitScatterNdOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, TfLiteOpaqueNode* tfLiteNode, int nodeIndex, int32_t scatterNdOperatorCode) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 3, nodeIndex)); TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); // Gather input indices and use to get input tensor. auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode); const int* inputTensors; if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } // Gather input indices and use to get output tensor. int numOutputs = 0; const int* outputTensors; if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } // The indices tensor are the positions the data is updated/scattered into const TfLiteOpaqueTensor* tfLiteIndicesTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]); if (IsDynamicTensor(tfLiteIndicesTensor)) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ", scatterNdOperatorCode, nodeIndex); return kTfLiteError; } // The updates tensor provides the data which will be updated/scattered into the relevant indices const TfLiteOpaqueTensor* tfLiteUpdatesTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]); if (IsDynamicTensor(tfLiteUpdatesTensor)) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ", scatterNdOperatorCode, nodeIndex); return kTfLiteError; } // For TFLite ScatterNd there is no input tensor // The shape tensor is a 1D tensor which represents the shape of an input tensor to be filled with zeros const TfLiteOpaqueTensor* tfLiteShapeTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[2]); if (IsDynamicTensor(tfLiteShapeTensor)) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ", scatterNdOperatorCode, nodeIndex); return kTfLiteError; } // The output tensor const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]); if (IsDynamicTensor(tfLiteOutputTensor)) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Dynamic output tensors are not supported in operator #%d node #%d: ", scatterNdOperatorCode, nodeIndex); return kTfLiteError; } const armnn::TensorInfo& shapeTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteShapeTensor); const armnn::TensorInfo& indicesTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteIndicesTensor); const armnn::TensorInfo& updatesTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteUpdatesTensor); const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true); armnn::ScatterNdDescriptor scatterNdDescriptor; scatterNdDescriptor.m_Function = armnn::ScatterNdFunction::Update; scatterNdDescriptor.m_InputEnabled = false; scatterNdDescriptor.m_Axis = 0; scatterNdDescriptor.m_AxisEnabled = false; // Check output dimensions if (shapeTensorInfo.GetShape().GetNumElements() != outputTensorInfo.GetNumDimensions()) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Input tensor dimension and output tensor dimension differ", "Operator: #%d node #%d: ", scatterNdOperatorCode, nodeIndex); return kTfLiteError; } // No network pointer indicates that only support for this operator should be checked if (!delegateData.m_Network) { return ValidateScatterNdOperator(delegateData, tfLiteContext, indicesTensorInfo, updatesTensorInfo, shapeTensorInfo, outputTensorInfo, scatterNdDescriptor); } auto layerName = GetName(armnn::LayerType::ScatterNd, nodeIndex); armnn::IConnectableLayer* layer = delegateData.m_Network->AddScatterNdLayer(scatterNdDescriptor, layerName.c_str()); if (layer == nullptr) { return kTfLiteError; } layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo); if (ProcessInputs(layer, delegateData, tfLiteContext, tfLiteNode, nodeIndex) != kTfLiteOk) { return kTfLiteError; } delegateData.m_OutputSlotForNode[inputTensors[2]]->Connect(layer->GetInputSlot(0)); delegateData.m_OutputSlotForNode[inputTensors[0]]->Connect(layer->GetInputSlot(1)); delegateData.m_OutputSlotForNode[inputTensors[1]]->Connect(layer->GetInputSlot(2)); // Prepare output slots armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0); delegateData.m_OutputSlotForNode[static_cast(outputTensors[0])] = &outputSlot; return kTfLiteOk; } } // namespace armnnOpaqueDelegate