// // Copyright © 2023 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include #include namespace armnnOpaqueDelegate { TfLiteStatus ValidateAddOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { std::vector infos { inputInfo1, inputInfo2, outputInfo }; FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("ADD", tfLiteContext, IsElementwiseBinarySupported, delegateData.m_Backends, isSupported, armnn::BackendId(), inputInfo1, inputInfo2, outputInfo, armnn::BinaryOperation::Add); }; validateFunc(outputInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } TfLiteStatus ValidateDivOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("DIV", tfLiteContext, IsElementwiseBinarySupported, delegateData.m_Backends, isSupported, armnn::BackendId(), inputInfo1, inputInfo2, outputTensorInfo, armnn::BinaryOperation::Div); }; validateFunc(outputInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } TfLiteStatus ValidateFloorDivOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { // need first to validate that the div operator is supported // then that the floor operator is supported TfLiteStatus status = ValidateDivOperator(delegateData, tfLiteContext, inputInfo1, inputInfo2, outputInfo); if (status != kTfLiteOk) { return status; } // if the inputs and output of the div are all Signed32 we don't need to add the floor operator afterward. if (AreAllSigned32(inputInfo1, inputInfo2, outputInfo)) { return status; } // in case broadcasting is being done from one of the inputs to the div // choose the full sized input tensor to pass to the floor validation routine armnn::TensorInfo floorInputInfo = inputInfo1; if (inputInfo1.GetNumDimensions() < inputInfo2.GetNumDimensions()) { floorInputInfo = inputInfo2; } status = ValidateFloorOperator(delegateData, tfLiteContext, floorInputInfo, outputInfo); return status; } TfLiteStatus ValidateMaximumOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("MAXIMUM", tfLiteContext, IsElementwiseBinarySupported, delegateData.m_Backends, isSupported, armnn::BackendId(), inputInfo1, inputInfo2, outputTensorInfo, armnn::BinaryOperation::Maximum); }; validateFunc(outputInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } TfLiteStatus ValidateMinimumOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("MINIMUM", tfLiteContext, IsElementwiseBinarySupported, delegateData.m_Backends, isSupported, armnn::BackendId(), inputInfo1, inputInfo2, outputTensorInfo, armnn::BinaryOperation::Minimum); }; validateFunc(outputInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } TfLiteStatus ValidateMulOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("MUL", tfLiteContext, IsElementwiseBinarySupported, delegateData.m_Backends, isSupported, armnn::BackendId(), inputInfo1, inputInfo2, outputTensorInfo, armnn::BinaryOperation::Mul); }; validateFunc(outputInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } TfLiteStatus ValidatePowerOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("POWER", tfLiteContext, IsElementwiseBinarySupported, delegateData.m_Backends, isSupported, armnn::BackendId(), inputInfo1, inputInfo2, outputTensorInfo, armnn::BinaryOperation::Power); }; validateFunc(outputInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } TfLiteStatus ValidateSquaredDifferenceOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("SQUAREDDIFFERENCE", tfLiteContext, IsElementwiseBinarySupported, delegateData.m_Backends, isSupported, armnn::BackendId(), inputInfo1, inputInfo2, outputTensorInfo, armnn::BinaryOperation::SqDiff); }; validateFunc(outputInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } TfLiteStatus ValidateSubOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, const armnn::TensorInfo& inputInfo1, const armnn::TensorInfo& inputInfo2, const armnn::TensorInfo& outputInfo) { bool isSupported = false; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("SUB", tfLiteContext, IsElementwiseBinarySupported, delegateData.m_Backends, isSupported, armnn::BackendId(), inputInfo1, inputInfo2, outputTensorInfo, armnn::BinaryOperation::Sub); }; validateFunc(outputInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } std::pair AddFloorDivLayer( DelegateData& delegateData, const armnn::TensorInfo& outputTensorInfo, int nodeIndex) { auto layerName = GetName(armnn::BinaryOperation::Div, nodeIndex); armnn::IConnectableLayer* divisionLayer = delegateData.m_Network->AddElementwiseBinaryLayer( armnn::BinaryOperation::Div, layerName.c_str()); // if the output of the div is Signed32 the Floor layer is not required if (armnn::DataType::Signed32 == outputTensorInfo.GetDataType()) { return std::make_pair(divisionLayer, divisionLayer); } armnn::IOutputSlot& outputSlot = divisionLayer->GetOutputSlot(0); outputSlot.SetTensorInfo(outputTensorInfo); auto floorName = GetName(armnn::LayerType::Floor, nodeIndex); armnn::IConnectableLayer* floorLayer = delegateData.m_Network->AddFloorLayer(floorName.c_str()); outputSlot.Connect(floorLayer->GetInputSlot(0)); return std::make_pair(divisionLayer, floorLayer); } TfLiteStatus VisitElementwiseBinaryOperator(DelegateData& delegateData, TfLiteOpaqueContext* tfLiteContext, TfLiteOpaqueNode* tfLiteNode, int nodeIndex, int32_t elementwiseBinaryOperatorCode) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex)); TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); // Gather input indices and use to get Input Tensors auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode); const int* inputTensors; if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteInputTensor0 = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]); if (!IsValid(tfLiteContext, tfLiteInputTensor0, elementwiseBinaryOperatorCode, nodeIndex)) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Invalid input tensor in operator #%d node #%d: ", elementwiseBinaryOperatorCode, nodeIndex); return kTfLiteError; } // Use input indices to get filter tensor. const TfLiteOpaqueTensor* tfLiteInputTensor1 = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]); if(!IsValid(tfLiteInputTensor1)) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Invalid input tensor in operator #%d node #%d: ", elementwiseBinaryOperatorCode, nodeIndex); return kTfLiteError; } // Gather output indices and use to get output tensors. int numOutputs = 0; const int* outputTensors; if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk) { TF_LITE_OPAQUE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ", nodeIndex); return kTfLiteError; } const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]); if (!IsValid(tfLiteContext, tfLiteOutputTensor, elementwiseBinaryOperatorCode, nodeIndex)) { return kTfLiteError; } armnn::TensorInfo inputTensorInfo0 = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor0); armnn::TensorInfo inputTensorInfo1 = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor1); const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true); // Check if we need to expand the dims of the input tensor infos. // This is required for a few of the backends. if(inputTensorInfo0.GetNumDimensions() != inputTensorInfo1.GetNumDimensions()) { ExpandTensorRankToEqual(inputTensorInfo0, inputTensorInfo1); } auto* tfLiteNodeParameters = reinterpret_cast(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode)); TfLiteFusedActivation activationType = kTfLiteActNone; if (tfLiteNodeParameters) { activationType = tfLiteNodeParameters->activation; TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData, tfLiteContext, outputTensorInfo, outputTensorInfo, activationType); if(activationStatus != kTfLiteOk) { return kTfLiteError; } } if (!delegateData.m_Network) { switch(elementwiseBinaryOperatorCode) { case kTfLiteBuiltinAdd: return ValidateAddOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); case kTfLiteBuiltinDiv: return ValidateDivOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); case kTfLiteBuiltinFloorDiv: return ValidateFloorDivOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); case kTfLiteBuiltinMaximum: return ValidateMaximumOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); case kTfLiteBuiltinMinimum: return ValidateMinimumOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); case kTfLiteBuiltinMul: return ValidateMulOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); case kTfLiteBuiltinPow: return ValidatePowerOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); case kTfLiteBuiltinSquaredDifference: return ValidateSquaredDifferenceOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); case kTfLiteBuiltinSub: return ValidateSubOperator(delegateData, tfLiteContext, inputTensorInfo0, inputTensorInfo1, outputTensorInfo); default: return kTfLiteError; } } armnn::IConnectableLayer* elementwiseBinaryLayer = nullptr; armnnDelegate::MultiLayerFacade multiLayer; std::string layerName; switch(elementwiseBinaryOperatorCode) { case kTfLiteBuiltinAdd: layerName = GetName(armnn::BinaryOperation::Add, nodeIndex); elementwiseBinaryLayer = delegateData.m_Network->AddElementwiseBinaryLayer(armnn::BinaryOperation::Add, layerName.c_str()); break; case kTfLiteBuiltinDiv: layerName = GetName(armnn::BinaryOperation::Div, nodeIndex); elementwiseBinaryLayer = delegateData.m_Network->AddElementwiseBinaryLayer(armnn::BinaryOperation::Div, layerName.c_str()); break; case kTfLiteBuiltinFloorDiv: { auto layers = AddFloorDivLayer(delegateData, outputTensorInfo, nodeIndex); multiLayer.AssignValues(layers.first, layers.second); elementwiseBinaryLayer = &multiLayer; } break; case kTfLiteBuiltinMaximum: layerName = GetName(armnn::BinaryOperation::Maximum, nodeIndex); elementwiseBinaryLayer = delegateData.m_Network->AddElementwiseBinaryLayer(armnn::BinaryOperation::Maximum, layerName.c_str()); break; case kTfLiteBuiltinMinimum: layerName = GetName(armnn::BinaryOperation::Minimum, nodeIndex); elementwiseBinaryLayer = delegateData.m_Network->AddElementwiseBinaryLayer(armnn::BinaryOperation::Minimum, layerName.c_str()); break; case kTfLiteBuiltinMul: layerName = GetName(armnn::BinaryOperation::Mul, nodeIndex); elementwiseBinaryLayer = delegateData.m_Network->AddElementwiseBinaryLayer(armnn::BinaryOperation::Mul, layerName.c_str()); break; case kTfLiteBuiltinPow: layerName = GetName(armnn::BinaryOperation::Power, nodeIndex); elementwiseBinaryLayer = delegateData.m_Network->AddElementwiseBinaryLayer(armnn::BinaryOperation::Power, layerName.c_str()); break; case kTfLiteBuiltinSquaredDifference: layerName = GetName(armnn::BinaryOperation::SqDiff, nodeIndex); elementwiseBinaryLayer = delegateData.m_Network->AddElementwiseBinaryLayer(armnn::BinaryOperation::SqDiff, layerName.c_str()); break; case kTfLiteBuiltinSub: layerName = GetName(armnn::BinaryOperation::Sub, nodeIndex); elementwiseBinaryLayer = delegateData.m_Network->AddElementwiseBinaryLayer(armnn::BinaryOperation::Sub, layerName.c_str()); break; default: return kTfLiteError; } ARMNN_ASSERT(elementwiseBinaryLayer != nullptr); armnn::IOutputSlot& outputSlot = elementwiseBinaryLayer->GetOutputSlot(0); outputSlot.SetTensorInfo(outputTensorInfo); auto inputsTensorsProcess = ProcessInputs(elementwiseBinaryLayer, delegateData, tfLiteContext, tfLiteNode, nodeIndex); if (inputsTensorsProcess == kTfLiteError) { return inputsTensorsProcess; } if(Connect(elementwiseBinaryLayer, tfLiteContext, tfLiteNode, delegateData) != kTfLiteOk) { return kTfLiteError; } if (!tfLiteNodeParameters) { // No Activation return kTfLiteOk; } // Check and Create Activation return FusedActivation(tfLiteContext, tfLiteNode, activationType, elementwiseBinaryLayer, 0, delegateData, nodeIndex); } } // namespace armnnOpaqueDelegate