// // Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include #include #include #include #include namespace armnnDelegate { TfLiteStatus VisitDequantizeOperator(DelegateData& delegateData, TfLiteContext* tfLiteContext, TfLiteNode* tfLiteNode, int nodeIndex, int32_t tfLiteDequantizeOperatorCode) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors; const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]]; if (IsDynamicTensor(tfLiteInputTensor)) { TF_LITE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ", tfLiteDequantizeOperatorCode, nodeIndex); return kTfLiteError; } const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]]; if (IsDynamicTensor(tfLiteOutputTensor)) { TF_LITE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnDelegate: Dynamic output tensors are not supported in operator #%d node #%d: ", tfLiteDequantizeOperatorCode, nodeIndex); return kTfLiteError; } const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor); armnn::TensorInfo outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true); UpdateConstantTensorOutputs(inputTensorInfo, outputTensorInfo); bool isSupported = false; armnn::BackendId setBackend; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { // If this is a Dequantize with a Constant input then will be replaced by a Constant layer that contains the // dequantized values during optimization so there's no need to check if it can be supported by the backend if (tflite::IsConstantTensor(&tfLiteInputTensor)) { isSupported = true; } else { FORWARD_LAYER_SUPPORT_FUNC("DEQUANTIZE", tfLiteContext, IsDequantizeSupported, delegateData.m_Backends, isSupported, setBackend, inputTensorInfo, outputTensorInfo); } }; if (!delegateData.m_Network) { validateFunc(outputTensorInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } auto layerName = GetLayerName(armnn::LayerType::Dequantize, nodeIndex); armnn::IConnectableLayer* dequantizeLayer = delegateData.m_Network->AddDequantizeLayer(layerName.c_str()); dequantizeLayer->SetBackendId(setBackend); ARMNN_ASSERT(dequantizeLayer != nullptr); armnn::IOutputSlot& outputSlot = dequantizeLayer->GetOutputSlot(0); outputSlot.SetTensorInfo(outputTensorInfo); auto inputsTensorsProcess = ProcessInputs(dequantizeLayer, delegateData, tfLiteContext, tfLiteNode, nodeIndex); if (inputsTensorsProcess == kTfLiteError) { return inputsTensorsProcess; } return Connect(dequantizeLayer, tfLiteNode, delegateData); } TfLiteStatus VisitQuantizeOperator(DelegateData& delegateData, TfLiteContext* tfLiteContext, TfLiteNode* tfLiteNode, int nodeIndex, int32_t tfLiteQuantizeOperatorCode) { TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex)); const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors; const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]]; if (IsDynamicTensor(tfLiteInputTensor)) { TF_LITE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ", tfLiteQuantizeOperatorCode, nodeIndex); return kTfLiteError; } const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]]; if (IsDynamicTensor(tfLiteOutputTensor)) { TF_LITE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnDelegate: Dynamic output tensors are not supported in operator #%d node #%d: ", tfLiteQuantizeOperatorCode, nodeIndex); return kTfLiteError; } // Only affine per-layer quantization is supported. if (!IsAffineQuantization(tfLiteOutputTensor)) { TF_LITE_MAYBE_KERNEL_LOG( tfLiteContext, "TfLiteArmnnDelegate: Only affine per-layer quantization is supported in operator #%d node #%d: ", tfLiteQuantizeOperatorCode, nodeIndex); return kTfLiteError; } const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor); const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true); bool isSupported = false; armnn::BackendId setBackend; auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) { FORWARD_LAYER_SUPPORT_FUNC("QUANTIZE", tfLiteContext, IsQuantizeSupported, delegateData.m_Backends, isSupported, setBackend, inputTensorInfo, outputTensorInfo); }; if (!delegateData.m_Network) { validateFunc(outputTensorInfo, isSupported); return isSupported ? kTfLiteOk : kTfLiteError; } auto layerName = GetLayerName(armnn::LayerType::Quantize, nodeIndex); armnn::IConnectableLayer* quantizeLayer = delegateData.m_Network->AddQuantizeLayer(layerName.c_str()); quantizeLayer->SetBackendId(setBackend); ARMNN_ASSERT(quantizeLayer != nullptr); armnn::IOutputSlot& outputSlot = quantizeLayer->GetOutputSlot(0); outputSlot.SetTensorInfo(outputTensorInfo); // try to connect the Constant Inputs if there are any if (ProcessInputs(quantizeLayer, delegateData, tfLiteContext, tfLiteNode, nodeIndex) != kTfLiteOk) { return kTfLiteError; } return Connect(quantizeLayer, tfLiteNode, delegateData); } } // namespace armnnDelegate