ArmNN
 23.02
NeonUnidirectionalSequenceLstmWorkload.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
7 #include "NeonWorkloadUtils.hpp"
8 
11 
13 #include <armnnUtils/Permute.hpp>
14 #include <neon/test/NeonWorkloadFactoryHelper.hpp>
16 
18 
19 namespace
20 {
21 
22 unsigned int CalcAclAxis(unsigned int numDimensions, unsigned int axis)
23 {
24  return (numDimensions - axis) - 1;
25 }
26 } //namespace
27 
28 namespace armnn
29 {
30 using namespace armcomputetensorutils;
31 
35 {
36  // Report Profiling Details
37  ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonUnidirectionalSequenceLstmWorkload_Construct",
38  descriptor.m_Parameters,
39  info,
40  GetGuid());
41 
42  // Input/Output tensors
43  const arm_compute::ITensor& input = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
44  arm_compute::ITensor& outputStateIn = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
45  const arm_compute::ITensor& cellStateIn = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
46 
47  arm_compute::ITensor& outputStateOut = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
48  arm_compute::ITensor& cellStateOut = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[1])->GetTensor();
49  arm_compute::ITensor& output = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
50 
51  TensorInfo inputInfo = info.m_InputTensorInfos[0];
52  TensorInfo outputInfo = info.m_OutputTensorInfos[2];
53 
54  TensorShape inputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetShape();
55  TensorShape outputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetShape();
56 
57  unsigned int maxTime = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
58  unsigned int batchSize = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
59  unsigned int inputSize = inputLayerShape[2];
60  unsigned int outputSize = outputLayerShape[2];
61 
62  const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
63  const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
64 
65  //
66  // Permute: performed if Unidirectional Sequence Layer inputs/outputs are in batch major format.
67  //
68  if (!m_Data.m_Parameters.m_TimeMajor)
69  {
70  std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
71 
72  TensorInfo permuteOutInfo = inputInfo;
73  permuteOutInfo.SetShape(timeMajorShapeInput);
74  BuildArmComputeTensor(m_PermuteFirstOut, permuteOutInfo);
75  armcomputetensorutils::InitialiseArmComputeTensorEmpty(m_PermuteFirstOut);
76 
77  // Permute to time major format.
78  layer->configure(&input, &m_PermuteFirstOut, arm_compute::PermutationVector(0U,2U,1U));
79  m_Permute1.reset(layer.release());
80  }
81 
82  //
83  // Split and Concat Tensors
84  //
85  for (unsigned int i = 0; i < maxTime; ++i)
86  {
87  arm_compute::Tensor splitter_out;
88  arm_compute::Tensor concat_in;
89 
90  auto splitterTensorInfo = inputInfo;
91  auto concatTensorInfo = outputInfo;
92  splitterTensorInfo.SetShape({batchSize, inputSize});
93  concatTensorInfo.SetShape({batchSize, outputSize});
94  BuildArmComputeTensor(splitter_out, splitterTensorInfo);
95  BuildArmComputeTensor(concat_in, concatTensorInfo);
96 
97  armcomputetensorutils::InitialiseArmComputeTensorEmpty(splitter_out);
98  armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_in);
99 
100  // append to std::vector<arm_compute::Tensor>
101  m_SplitterOutputsTensors.push_back(std::move(splitter_out));
102  m_ConcatInputsTensors.push_back(std::move(concat_in));
103  }
104 
105  for (unsigned int i = 0; i < maxTime; ++i)
106  {
107  // append to std::vector<arm_compute::ITensor*>
108  m_SplitterOutputs.push_back(&m_SplitterOutputsTensors[i]);
109  m_ConcatInputs.push_back(&m_ConcatInputsTensors[i]);
110  }
111 
112  //
113  // Split
114  //
115  unsigned int numberDimensions = 3;
116  unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
117 
118  if (maxTime != 1) // ACL split does not work with only one element to split.
119  {
120  ViewsDescriptor splitterDesc(maxTime, numberDimensions);
121  unsigned int splitterDimSizes[3] = {1, batchSize, inputSize};
122  for (unsigned int outputIdx = 0u; outputIdx < maxTime; ++outputIdx)
123  {
124  splitterDesc.SetViewOriginCoord(outputIdx, dimension, splitterDimSizes[dimension] * outputIdx);
125  for (unsigned int dimIdx = 0u; dimIdx < numberDimensions; ++dimIdx)
126  {
127  splitterDesc.SetViewSize(outputIdx, dimIdx, splitterDimSizes[dimIdx]);
128  }
129  }
130 
131  std::set<unsigned int> splitAxis = ComputeSplitAxis(splitterDesc, timeMajorShapeInput);
132 
133  std::unique_ptr<arm_compute::NESplit> split_layer(new arm_compute::NESplit());
134  unsigned int aclAxisSplit = CalcAclAxis(splitterDesc.GetNumDimensions(),
135  *splitAxis.begin());
136  if (!m_Data.m_Parameters.m_TimeMajor)
137  {
138  split_layer->configure(&m_PermuteFirstOut, m_SplitterOutputs, aclAxisSplit);
139  } else
140  {
141  split_layer->configure(&input, m_SplitterOutputs, aclAxisSplit);
142  }
143 
144  split_layer->prepare();
145  m_Splitter.reset(split_layer.release());
146  }
147 
148  //
149  // Lstm
150  //
151  arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
152 
153  lstm_param.set_cell_clip_params(descriptor.m_Parameters.m_ClippingThresCell);
154  lstm_param.set_projection_clip_params(descriptor.m_Parameters.m_ClippingThresProj);
155 
156  lstm_param.set_matmul_scale_params(descriptor.m_Parameters.m_InputIntermediateScale,
160 
161  lstm_param.set_hidden_state_params(descriptor.m_Parameters.m_HiddenStateZeroPoint,
162  descriptor.m_Parameters.m_HiddenStateScale);
163 
164  m_InputToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
165  BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
166 
167  m_InputToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
168  BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
169 
170  m_InputToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
171  BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
172 
173  m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
174  BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
175 
176  m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
177  BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
178 
179  m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
180  BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
181 
182  m_ForgetGateBiasTensor = std::make_unique<arm_compute::Tensor>();
183  BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
184 
185  m_CellBiasTensor = std::make_unique<arm_compute::Tensor>();
186  BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
187 
188  m_OutputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
189  BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
190 
191  // for future reference: check the AndroidNN API for the logic here
192  if (!m_Data.m_Parameters.m_CifgEnabled)
193  {
194  m_InputToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
195  BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
196 
197  m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
198  BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
199 
200  m_CellToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
201  if (m_Data.m_CellToInputWeights != nullptr)
202  {
203  BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
204  }
205 
206  m_InputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
207  BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
208  lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
209  m_RecurrentToInputWeightsTensor.get(),
210  m_Data.m_CellToInputWeights ? m_CellToInputWeightsTensor.get() : nullptr,
211  m_InputGateBiasTensor.get());
212  }
213 
214  if (m_Data.m_Parameters.m_ProjectionEnabled)
215  {
216  m_ProjectionWeightsTensor = std::make_unique<arm_compute::Tensor>();
217  BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
218 
219  m_ProjectionBiasTensor = std::make_unique<arm_compute::Tensor>();
220  if (m_Data.m_ProjectionBias != nullptr)
221  {
222  BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
223  }
224 
225  lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
226  m_Data.m_ProjectionBias ? m_ProjectionBiasTensor.get() : nullptr);
227  }
228 
229  if (m_Data.m_Parameters.m_PeepholeEnabled)
230  {
231  m_CellToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
232  BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
233 
234  m_CellToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
235  BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
236 
237  lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
238  }
239 
240  if (m_Data.m_Parameters.m_LayerNormEnabled)
241  {
242  m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
243  if (!m_Data.m_Parameters.m_CifgEnabled)
244  {
245  BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
246  }
247 
248  m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
249  BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
250 
251  m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
252  BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
253 
254  m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
255  BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
256 
257  auto inputNormWeightTensor = m_Data.m_Parameters.m_CifgEnabled ? nullptr : m_InputLayerNormWeightsTensor.get();
258  lstm_param.set_layer_normalization_params(inputNormWeightTensor,
259  m_ForgetLayerNormWeightsTensor.get(),
260  m_CellLayerNormWeightsTensor.get(),
261  m_OutputLayerNormWeightsTensor.get());
262  }
263 
264  for (unsigned int i = 0; i != maxTime; ++i)
265  {
266  // Set LSTM input and output ITensors depending on:
267  // input format (timeMajor) & number of LSTM batches (maxTime).
268  arm_compute::ITensor* outputLSTM;
269  arm_compute::ITensor* inputLSTM;
270 
271  // If there is only one LSTM time major batch, we will not concat OR permute.
272  // Set input of LSTM to be first input ITensor.
273  // Set output of LSTM to be final output ITensor.
274  // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
275  if (maxTime == 1 && m_Data.m_Parameters.m_TimeMajor)
276  {
277  TensorShape inputShape = GetTensorShape(input.info()->tensor_shape(), 1U);
278  TensorShape outputShape = GetTensorShape(output.info()->tensor_shape(), 1U);
279 
280  TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
281  TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
282 
283  auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
284  auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
285 
286  input.info()->set_tensor_shape(acl_input_shape_shrink);
287  inputLSTM = const_cast<arm_compute::ITensor*>(&input);
288 
289  output.info()->set_tensor_shape(acl_output_shape_shrink);
290  outputLSTM = &output;
291  }
292  // If there is only one LSTM batch major batch, we will not concat, only permute.
293  // Set input of LSTM to be output of initial permute.
294  // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
295  // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
296  else if (maxTime == 1 && !m_Data.m_Parameters.m_TimeMajor)
297  {
298  TensorShape inputShape = GetTensorShape(m_PermuteFirstOut.info()->tensor_shape(), 1U);
299  TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
300  auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
301  m_PermuteFirstOut.info()->set_tensor_shape(acl_input_shape_shrink);
302  inputLSTM = &m_PermuteFirstOut;
303 
304  outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
305  }
306  // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
307  else
308  {
309  inputLSTM = m_SplitterOutputs[i];
310  outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
311  }
312 
313  std::unique_ptr<arm_compute::NEQLSTMLayer> lstm_layer(new arm_compute::NEQLSTMLayer());
314 
315  lstm_layer->configure(inputLSTM,
316  m_InputToForgetWeightsTensor.get(),
317  m_InputToCellWeightsTensor.get(),
318  m_InputToOutputWeightsTensor.get(),
319  m_RecurrentToForgetWeightsTensor.get(),
320  m_RecurrentToCellWeightsTensor.get(),
321  m_RecurrentToOutputWeightsTensor.get(),
322  m_ForgetGateBiasTensor.get(),
323  m_CellBiasTensor.get(),
324  m_OutputGateBiasTensor.get(),
325  &cellStateIn,
326  &outputStateIn,
327  &cellStateOut,
328  &outputStateOut,
329  outputLSTM,
330  lstm_param);
331 
332  m_Layers.emplace_back(std::move(lstm_layer));
333  }
334 
335  InitializeArmComputeTensorData(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights);
336  InitializeArmComputeTensorData(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights);
337  InitializeArmComputeTensorData(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights);
338  InitializeArmComputeTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
339  InitializeArmComputeTensorData(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights);
340  InitializeArmComputeTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
341  InitializeArmComputeTensorData(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias);
342  InitializeArmComputeTensorData(*m_CellBiasTensor, m_Data.m_CellBias);
343  InitializeArmComputeTensorData(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias);
344 
345  if (!m_Data.m_Parameters.m_CifgEnabled)
346  {
347  InitializeArmComputeTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
348  InitializeArmComputeTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
349  if (m_Data.m_CellToInputWeights != nullptr)
350  {
351  InitializeArmComputeTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
352  }
353  InitializeArmComputeTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
354  }
355 
356  if (m_Data.m_Parameters.m_ProjectionEnabled)
357  {
358  InitializeArmComputeTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
359  if (m_Data.m_ProjectionBias != nullptr)
360  {
361  InitializeArmComputeTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
362  }
363  }
364 
365  if (m_Data.m_Parameters.m_PeepholeEnabled)
366  {
367  InitializeArmComputeTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
368  InitializeArmComputeTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
369  }
370 
371  if (m_Data.m_Parameters.m_LayerNormEnabled)
372  {
373  if (!m_Data.m_Parameters.m_CifgEnabled)
374  {
375  InitializeArmComputeTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
376  }
377  InitializeArmComputeTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
378  InitializeArmComputeTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
379  InitializeArmComputeTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
380  }
381 
382  // Force Compute Library to perform the necessary copying and reshaping.
383  // After which delete all the input tensors that will no longer be needed.
384  for (uint32_t i = 0; i < m_Layers.size(); ++i)
385  {
386  m_Layers[i]->prepare();
387  }
388 
389  //
390  // Concat
391  //
392 
393  // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
394  TensorShape shape = GetTensorShape(m_ConcatInputs[0]->info()->tensor_shape(), 1U);
395  TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
396  TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
397 
398  if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
399  {
400  for (unsigned int i = 0; i < maxTime; ++i)
401  {
402  m_ConcatInputs[i]->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
403  }
404  ConcatDescriptor concatDescriptor(maxTime, numberDimensions); // maxTime = num inputs (aka. number of views).
405 
406  for (unsigned int inputIdx = 0u; inputIdx < maxTime; ++inputIdx)
407  {
408  concatDescriptor.SetViewOriginCoord(inputIdx, dimension, inputIdx);
409  concatDescriptor.SetConcatAxis(dimension);
410  }
411  m_Concat.reset(new arm_compute::NEConcatenateLayer());
412 
413  unsigned int aclAxisConcat = CalcAclAxis(concatDescriptor.GetNumDimensions(), concatDescriptor.GetConcatAxis());
414  if (!m_Data.m_Parameters.m_TimeMajor)
415  {
416  TensorInfo concatOutputTensorInfo = outputInfo;
417  concatOutputTensorInfo.SetShape(timeMajorShapeOutput);
418  BuildArmComputeTensor(concat_out, concatOutputTensorInfo);
419  armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_out);
420 
421  m_Concat->configure(m_ConcatInputs, &concat_out, aclAxisConcat);
422  }
423  else
424  {
425  m_Concat->configure(m_ConcatInputs, &output, aclAxisConcat);
426  }
427 
428  m_Concat->prepare();
429  }
430  // If only one LSTM batch, we do not concat and/or permute.
431  // Must ensure final output info is expanded to correct batch major dimensions.
432  else
433  {
434  if (!m_Data.m_Parameters.m_TimeMajor)
435  {
436  output.info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandBatchMajor));
437  }
438  else
439  {
440  output.info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
441  }
442  }
443 
444  //
445  // Permute: only done if input/output are in batch major format.
446  //
447  if (!m_Data.m_Parameters.m_TimeMajor)
448  {
449  // Output now time major. Permute output back to batch major.
450  std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
451  if (maxTime != 1)
452  {
453  layer->configure(&concat_out, &output, arm_compute::PermutationVector(0U, 2U, 1U));
454  }
455  else
456  {
457  layer->configure(m_ConcatInputs[0], &output, arm_compute::PermutationVector(0U, 2U, 1U));
458  }
459  m_Permute2.reset(layer.release());
460  }
461 
462  FreeUnusedTensors();
463 }
464 
466 {
467  ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonUnidirectionalSequenceLstmWorkload_Execute", GetGuid());
468  if (m_Permute1)
469  {
470  m_Permute1->run();
471  }
472  if (m_Splitter)
473  {
474  m_Splitter->run();
475  }
476  for (uint32_t i = 0; i < m_Layers.size(); ++i)
477  {
478  m_Layers[i]->run();
479  }
480  if (m_Concat)
481  {
482  m_Concat->run();
483  }
484  if (m_Permute2)
485  {
486  m_Permute2->run();
487  }
488 }
489 
492  const TensorInfo& outputStateIn,
493  const TensorInfo& cellStateIn,
494  const TensorInfo& outputStateOut,
495  const TensorInfo& cellStateOut,
496  const TensorInfo& output,
497  const UnidirectionalSequenceLstmDescriptor& descriptor,
498  const LstmInputParamsInfo& paramsInfo)
499 {
500  TensorShape inputLayerShape = input.GetShape();
501  TensorShape outputLayerShape = output.GetShape();
502 
503  unsigned int maxTime = descriptor.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
504  unsigned int batchSize = descriptor.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
505  unsigned int inputSize = inputLayerShape[2];
506  unsigned int outputSize = outputLayerShape[2];
507 
508  const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
509  const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
510 
511  arm_compute::Status statusPermute1 = arm_compute::Status(arm_compute::ErrorCode::OK,
512  "Permute1 status");
513  arm_compute::Status statusSplit = arm_compute::Status(arm_compute::ErrorCode::OK,
514  "Split status");
515  arm_compute::Status statusLSTM = arm_compute::Status(arm_compute::ErrorCode::OK,
516  "LSTM status");
517  arm_compute::Status statusConcat = arm_compute::Status(arm_compute::ErrorCode::OK,
518  "Concat status");
519  arm_compute::Status statusPermute2 = arm_compute::Status(arm_compute::ErrorCode::OK,
520  "Permute2 status");
521 
522  const arm_compute::TensorInfo aclInputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(input);
523  const arm_compute::TensorInfo aclOutputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(output);
524 
525  //
526  // Permute validate
527  //
528  TensorInfo permuteOutInfo = TensorInfo(input);
529  arm_compute::TensorInfo aclPermuteOutInfo = armcomputetensorutils::BuildArmComputeTensorInfo(permuteOutInfo);
530  if (!descriptor.m_TimeMajor)
531  {
532  statusPermute1 = arm_compute::NEPermute::validate(&aclInputInfo,
533  &aclPermuteOutInfo,
534  arm_compute::PermutationVector(0U, 2U, 1U));
535  }
536 
537  //
538  // Split and Concat Tensors validate
539  //
540  std::vector<arm_compute::TensorInfo> splitterOutputsTensorInfos;
541  std::vector<arm_compute::TensorInfo> concatInputsTensorInfos;
542  std::vector<arm_compute::ITensorInfo*> splitterOutputsTensorInfosPtr;
543  std::vector<const arm_compute::ITensorInfo*> concatInputsTensorInfosPtr;
544  splitterOutputsTensorInfos.reserve(maxTime);
545  concatInputsTensorInfos.reserve(maxTime);
546  for (unsigned int i = 0; i < maxTime; ++i)
547  {
548  arm_compute::TensorInfo splitter_out;
549  arm_compute::TensorInfo concat_in;
550 
551  auto splitterTensorInfo = TensorInfo(input);
552  auto concatTensorInfo = TensorInfo(output);
553  splitterTensorInfo.SetShape({batchSize, inputSize});
554  concatTensorInfo.SetShape({batchSize, outputSize});
555 
556  arm_compute::TensorInfo aclSplitterTensorInfo
557  = armcomputetensorutils::BuildArmComputeTensorInfo(splitterTensorInfo);
558  arm_compute::TensorInfo aclConcatTensorInfo
559  = armcomputetensorutils::BuildArmComputeTensorInfo(concatTensorInfo);
560 
561  splitterOutputsTensorInfos.emplace_back(aclSplitterTensorInfo);
562  concatInputsTensorInfos.emplace_back(aclConcatTensorInfo);
563  splitterOutputsTensorInfosPtr.emplace_back(&splitterOutputsTensorInfos[i]);
564  concatInputsTensorInfosPtr.emplace_back(&concatInputsTensorInfos[i]);
565  }
566 
567  //
568  // Split validate
569  //
570  unsigned int numberDimensions = 3;
571  unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
572  unsigned int aclAxisSplit = CalcAclAxis(numberDimensions, dimension);
573 
574  if (maxTime != 1) // ACL split does not work with only one element to split.
575  {
576  if (!descriptor.m_TimeMajor)
577  {
578  statusSplit = arm_compute::NESplit::validate(&aclPermuteOutInfo,
579  splitterOutputsTensorInfosPtr,
580  aclAxisSplit);
581  } else
582  {
583  statusSplit = arm_compute::NESplit::validate(&aclInputInfo, splitterOutputsTensorInfosPtr, aclAxisSplit);
584  }
585  }
586 
587  //
588  // LSTM validate
589  //
590 
591  arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
592 
593  const TensorInfo& scratchBuffer = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
594 
595  lstm_params_info.set_cell_clip_params(descriptor.m_ClippingThresCell);
596  lstm_params_info.set_projection_clip_params(descriptor.m_ClippingThresProj);
597  // The inputs and outputs
598  const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
599  const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
600  const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
601  const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
602  const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
603 
604  // Basic parameters
605  const arm_compute::TensorInfo aclInputToForgetWeightsInfo
606  = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
607  const arm_compute::TensorInfo aclInputToCellWeightsInfo
608  = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
609  const arm_compute::TensorInfo aclInputToOutputWeightsInfo
610  = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
611  const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
612  = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
613  const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
614  = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
615  const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
616  = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
617  const arm_compute::TensorInfo aclForgetGateBiasInfo
618  = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
619  const arm_compute::TensorInfo aclCellBiasInfo
620  = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
621  const arm_compute::TensorInfo aclOutputGateBiasInfo
622  = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
623 
624  arm_compute::TensorInfo aclInputToInputWeightsInfo;
625  arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
626  arm_compute::TensorInfo aclCellToInputWeightsInfo;
627  arm_compute::TensorInfo aclInputGateBiasInfo;
628  arm_compute::TensorInfo aclProjectionWeightsInfo;
629  arm_compute::TensorInfo aclProjectionBiasInfo;
630  arm_compute::TensorInfo aclCellToForgetWeightsInfo;
631  arm_compute::TensorInfo aclCellToOutputWeightsInfo;
632 
633  arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
634  arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
635  arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
636  arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
637 
638  if (!descriptor.m_CifgEnabled)
639  {
640  if (descriptor.m_PeepholeEnabled)
641  {
642  aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
643  }
644  aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
645  aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
646  aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
647 
648  lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo,
649  &aclRecurrentToInputWeightsInfo,
650  descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
651  &aclInputGateBiasInfo);
652  }
653 
654  if (descriptor.m_ProjectionEnabled)
655  {
656  if (paramsInfo.m_ProjectionBias != nullptr)
657  {
658  aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
659  }
660  aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
661 
662  lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
663  paramsInfo.m_ProjectionBias ? &aclProjectionBiasInfo : nullptr);
664  }
665 
666  if (descriptor.m_PeepholeEnabled)
667  {
668  aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
669  aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
670 
671  lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
672  }
673 
674  if (descriptor.m_LayerNormEnabled)
675  {
676  if (!descriptor.m_CifgEnabled)
677  {
678  aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
679  }
680  aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
681  aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
682  aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
683 
684  lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ? nullptr :
685  &aclInputLayerNormWeightsInfo,
686  &aclForgetLayerNormWeightsInfo,
687  &aclCellLayerNormWeightsInfo,
688  &aclOutputLayerNormWeightsInfo);
689  }
690 
691  lstm_params_info.set_matmul_scale_params(descriptor.m_InputIntermediateScale,
692  descriptor.m_ForgetIntermediateScale,
693  descriptor.m_CellIntermediateScale,
694  descriptor.m_OutputIntermediateScale);
695 
696  lstm_params_info.set_hidden_state_params(descriptor.m_HiddenStateZeroPoint, descriptor.m_HiddenStateScale);
697 
698  for (unsigned int i = 0; i != maxTime; ++i)
699  {
700 
701  // Set LSTM input and output ITensors depending on:
702  // input format (timeMajor) & number of LSTM batches (maxTime).
703  arm_compute::ITensorInfo* outputLSTM;
704  arm_compute::ITensorInfo* inputLSTM;
705 
706  // If there is only one LSTM time major batch, we will not concat OR permute.
707  // Set input of LSTM to be first input ITensor.
708  // Set output of LSTM to be final output ITensor.
709  // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
710  if (maxTime == 1 && !descriptor.m_TimeMajor)
711  {
712  TensorShape inputShape = GetTensorShape(aclInputInfo.tensor_shape(), 1U);
713  TensorShape outputShape = GetTensorShape(aclOutputInfo.tensor_shape(), 1U);
714 
715  TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
716  TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
717 
718  auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
719  auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
720 
721  const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(acl_input_shape_shrink);
722  inputLSTM = const_cast<arm_compute::TensorInfo*>(&aclInputInfo);
723 
724  const_cast<arm_compute::TensorInfo*>(&aclOutputInfo)->set_tensor_shape(acl_output_shape_shrink);
725  outputLSTM = const_cast<arm_compute::TensorInfo*>(&aclOutputInfo);
726  }
727  // If there is only one LSTM batch major batch, we will not concat, only permute.
728  // Set input of LSTM to be output of initial permute.
729  // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
730  // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
731  else if (maxTime == 1 && !descriptor.m_TimeMajor)
732  {
733  TensorShape inputShape = GetTensorShape(aclPermuteOutInfo.tensor_shape(), 1U);
734  TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
735  auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
736  aclPermuteOutInfo.set_tensor_shape(acl_input_shape_shrink);
737  inputLSTM = &aclPermuteOutInfo;
738 
739  outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
740  }
741  // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
742  else
743  {
744  inputLSTM = splitterOutputsTensorInfosPtr[i];
745  outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
746  }
747 
748  statusLSTM = arm_compute::NEQLSTMLayer::validate(inputLSTM,
749  &aclInputToForgetWeightsInfo,
750  &aclInputToCellWeightsInfo,
751  &aclInputToOutputWeightsInfo,
752  &aclRecurrentToForgetWeightsInfo,
753  &aclRecurrentToCellWeightsInfo,
754  &aclRecurrentToOutputWeightsInfo,
755  &aclForgetGateBiasInfo,
756  &aclCellBiasInfo,
757  &aclOutputGateBiasInfo,
758  &aclCellStateInInfo,
759  &aclOutputStateInInfo,
760  &aclCellStateOutInfo,
761  &aclOutputStateOutInfo,
762  outputLSTM,
763  lstm_params_info);
764  }
765 
766  //
767  // Concat validate
768  //
769 
770  // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
771  TensorShape shape = GetTensorShape(concatInputsTensorInfosPtr[0]->tensor_shape(), 1U);
772  TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
773  TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
774 
775  TensorInfo concatOutputTensorInfo = TensorInfo(output);
776  concatOutputTensorInfo.SetShape(timeMajorShapeOutput);
777  arm_compute::TensorInfo aclConcatOutputTensorInfo= BuildArmComputeTensorInfo(concatOutputTensorInfo);
778 
779  if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
780  {
781  for (unsigned int i = 0; i < maxTime; ++i)
782  {
783  auto acl_shape_expand = BuildArmComputeTensorShape(shapeExpandTimeMajor);
784  concatInputsTensorInfos[i].set_tensor_shape(acl_shape_expand);
785  }
786 
787  unsigned int aclAxisConcat = CalcAclAxis(numberDimensions, dimension);
788  if (!descriptor.m_TimeMajor)
789  {
790  statusConcat = arm_compute::NEConcatenateLayer::validate(concatInputsTensorInfosPtr,
791  &aclConcatOutputTensorInfo,
792  aclAxisConcat);
793  }
794  else
795  {
796  statusConcat = arm_compute::NEConcatenateLayer::validate(concatInputsTensorInfosPtr,
797  &aclOutputInfo,
798  aclAxisConcat);
799  }
800  }
801  // If only one LSTM batch, we do not concat and/or permute.
802  // Must ensure final output info is expanded to correct batch major dimensions.
803  else
804  {
805  if (!descriptor.m_TimeMajor)
806  {
807  const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
808  BuildArmComputeTensorShape(shapeExpandBatchMajor));
809  }
810  else
811  {
812  const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
813  BuildArmComputeTensorShape(shapeExpandTimeMajor));
814  }
815  }
816 
817  //
818  // Permute validate
819  //
820  if (!descriptor.m_TimeMajor)
821  {
822  // Output now time major. Permute output back to batch major.
823  if (maxTime != 1)
824  {
825  statusPermute2 = arm_compute::NEPermute::validate(&aclConcatOutputTensorInfo,
826  &aclOutputInfo,
827  arm_compute::PermutationVector(0U, 2U, 1U));
828  }
829  else
830  {
831  statusPermute2 = arm_compute::NEPermute::validate(concatInputsTensorInfosPtr[0],
832  &aclOutputInfo,
833  arm_compute::PermutationVector(0U, 2U, 1U));
834  }
835  }
836 
837  auto okCode = arm_compute::ErrorCode::OK;
838  if (statusPermute1.error_code() == okCode &&
839  statusSplit.error_code() == okCode &&
840  statusLSTM .error_code() == okCode &&
841  statusConcat.error_code() == okCode &&
842  statusPermute2.error_code() == okCode)
843  {
844  return arm_compute::Status(arm_compute::ErrorCode::OK,
845  "All Unidirectional Sequence LSTM layer validate status OK.");
846  }
847  else
848  {
849  return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
850  "Unidirectional Sequence LSTM layer validate status failed.");
851  }
852 }
853 
854 void NeonUnidirectionalSequenceLstmWorkload::FreeUnusedTensors()
855 {
856  FreeTensorIfUnused(m_InputToInputWeightsTensor);
857  FreeTensorIfUnused(m_InputToForgetWeightsTensor);
858  FreeTensorIfUnused(m_InputToCellWeightsTensor);
859  FreeTensorIfUnused(m_InputToOutputWeightsTensor);
860  FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
861  FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
862  FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
863  FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
864  FreeTensorIfUnused(m_CellToInputWeightsTensor);
865  FreeTensorIfUnused(m_CellToForgetWeightsTensor);
866  FreeTensorIfUnused(m_CellToOutputWeightsTensor);
867  FreeTensorIfUnused(m_InputGateBiasTensor);
868  FreeTensorIfUnused(m_ForgetGateBiasTensor);
869  FreeTensorIfUnused(m_CellBiasTensor);
870  FreeTensorIfUnused(m_OutputGateBiasTensor);
871  FreeTensorIfUnused(m_ProjectionWeightsTensor);
872  FreeTensorIfUnused(m_ProjectionBiasTensor);
873  FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
874  FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
875  FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
876  FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
877 }
878 
879 } //namespace armnn
armnn::LstmInputParamsInfo::GetInputToCellWeights
const TensorInfo & GetInputToCellWeights() const
Definition: LstmParams.hpp:129
armnn::LstmInputParamsInfo::GetCellToOutputWeights
const TensorInfo & GetCellToOutputWeights() const
Definition: LstmParams.hpp:161
armnn::LstmDescriptor::m_TimeMajor
bool m_TimeMajor
Enable/disable time major.
Definition: Descriptors.hpp:1101
armnn::LstmInputParamsInfo
Definition: LstmParams.hpp:63
armnn::LstmInputParamsInfo::GetOutputLayerNormWeights
const TensorInfo & GetOutputLayerNormWeights() const
Definition: LstmParams.hpp:201
armnn::OriginsDescriptor::GetNumDimensions
uint32_t GetNumDimensions() const
Get the number of dimensions.
Definition: Descriptors.cpp:192
armnnUtils::GetTensorShape
armnn::TensorShape GetTensorShape(unsigned int numberOfBatches, unsigned int numberOfChannels, unsigned int height, unsigned int width, const armnn::DataLayout dataLayout)
Definition: TensorUtils.cpp:19
armnn::LstmInputParamsInfo::GetInputToInputWeights
const TensorInfo & GetInputToInputWeights() const
Definition: LstmParams.hpp:121
armnn::NeonUnidirectionalSequenceLstmWorkload::Execute
virtual void Execute() const override
Definition: NeonUnidirectionalSequenceLstmWorkload.cpp:465
armnn::LstmDescriptor
An LstmDescriptor for the LstmLayer.
Definition: Descriptors.hpp:1049
armnn::LstmInputParamsInfo::m_ProjectionBias
const TensorInfo * m_ProjectionBias
Definition: LstmParams.hpp:105
armnn::LstmInputParamsInfo::GetForgetGateBias
const TensorInfo & GetForgetGateBias() const
Definition: LstmParams.hpp:169
armnn::OriginsDescriptor::SetConcatAxis
void SetConcatAxis(unsigned int concatAxis)
Set the concatenation axis value.
Definition: Descriptors.cpp:158
armnn::LstmDescriptor::m_CifgEnabled
bool m_CifgEnabled
Enable/disable cifg (coupled input & forget gate).
Definition: Descriptors.hpp:1093
armnn::LstmDescriptor::m_LayerNormEnabled
bool m_LayerNormEnabled
Enable/disable layer normalization.
Definition: Descriptors.hpp:1099
armnn::LstmInputParamsInfo::GetRecurrentToForgetWeights
const TensorInfo & GetRecurrentToForgetWeights() const
Definition: LstmParams.hpp:141
armnn::ViewsDescriptor
A ViewsDescriptor for the SplitterLayer.
Definition: Descriptors.hpp:224
armnn::OriginsDescriptor::GetConcatAxis
unsigned int GetConcatAxis() const
Get the concatenation axis value.
Definition: Descriptors.cpp:162
armnn::LstmInputParamsInfo::GetProjectionWeights
const TensorInfo & GetProjectionWeights() const
Definition: LstmParams.hpp:181
armnn::LstmInputParamsInfo::GetInputGateBias
const TensorInfo & GetInputGateBias() const
Definition: LstmParams.hpp:165
armnn::LstmInputParamsInfo::GetInputToForgetWeights
const TensorInfo & GetInputToForgetWeights() const
Definition: LstmParams.hpp:125
armnn::LstmDescriptor::m_InputIntermediateScale
float m_InputIntermediateScale
Input intermediate quantization scale.
Definition: Descriptors.hpp:1103
armnn::ViewsDescriptor::GetNumDimensions
uint32_t GetNumDimensions() const
Get the number of dimensions.
Definition: Descriptors.cpp:300
armnn::LstmInputParamsInfo::GetProjectionBias
const TensorInfo & GetProjectionBias() const
Definition: LstmParams.hpp:185
armnn
Copyright (c) 2021 ARM Limited and Contributors.
Definition: 01_00_quick_start.dox:6
armnn::ViewsDescriptor::SetViewOriginCoord
Status SetViewOriginCoord(uint32_t view, uint32_t coord, uint32_t value)
@Brief Set the view origin coordinates.
Definition: Descriptors.cpp:310
armnn::InitializeArmComputeTensorData
void InitializeArmComputeTensorData(arm_compute::Tensor &tensor, TensorInfo tensorInfo, const ITensorHandle *handle)
Definition: NeonWorkloadUtils.hpp:60
armnn::ComputeSplitAxis
std::set< unsigned int > ComputeSplitAxis(const armnn::SplitterDescriptor &desc, const TensorShape &input)
Definition: ArmComputeUtils.hpp:244
armnn::UnidirectionalSequenceLstmQueueDescriptor
Definition: WorkloadData.hpp:686
NeonUnidirectionalSequenceLstmWorkload.hpp
armnn::LstmDescriptor::m_CellIntermediateScale
float m_CellIntermediateScale
Cell intermediate quantization scale.
Definition: Descriptors.hpp:1107
armnn::LstmInputParamsInfo::GetInputLayerNormWeights
const TensorInfo & GetInputLayerNormWeights() const
Definition: LstmParams.hpp:189
armnn::LstmInputParamsInfo::GetRecurrentToInputWeights
const TensorInfo & GetRecurrentToInputWeights() const
Definition: LstmParams.hpp:137
armnn::TensorShape
Definition: Tensor.hpp:20
ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID
#define ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID(name, guid)
Definition: NeonWorkloadUtils.hpp:24
armnn::LstmInputParamsInfo::GetRecurrentToCellWeights
const TensorInfo & GetRecurrentToCellWeights() const
Definition: LstmParams.hpp:145
armnn::LstmDescriptor::m_HiddenStateScale
float m_HiddenStateScale
Hidden State quantization scale.
Definition: Descriptors.hpp:1113
armnn::LstmDescriptor::m_HiddenStateZeroPoint
int32_t m_HiddenStateZeroPoint
Hidden State zero point.
Definition: Descriptors.hpp:1111
armnn::LstmInputParamsInfo::GetOutputGateBias
const TensorInfo & GetOutputGateBias() const
Definition: LstmParams.hpp:177
ArmComputeTensorUtils.hpp
armnn::LstmDescriptor::m_PeepholeEnabled
bool m_PeepholeEnabled
Enable/disable peephole.
Definition: Descriptors.hpp:1095
armnn::LstmInputParamsInfo::GetCellBias
const TensorInfo & GetCellBias() const
Definition: LstmParams.hpp:173
ArmComputeUtils.hpp
armnn::TensorInfo
Definition: Tensor.hpp:152
armnn::IAclTensorHandle
Definition: ArmComputeTensorHandle.hpp:16
NeonWorkloadUtils.hpp
Permute.hpp
armnn::NeonUnidirectionalSequenceLstmWorkloadValidate
arm_compute::Status NeonUnidirectionalSequenceLstmWorkloadValidate(const TensorInfo &input, const TensorInfo &outputStateIn, const TensorInfo &cellStateIn, const TensorInfo &outputStateOut, const TensorInfo &cellStateOut, const TensorInfo &output, const UnidirectionalSequenceLstmDescriptor &descriptor, const LstmInputParamsInfo &paramsInfo)
Definition: NeonUnidirectionalSequenceLstmWorkload.cpp:491
armnn::Status
Status
Definition: Types.hpp:42
armnn::LstmDescriptor::m_OutputIntermediateScale
float m_OutputIntermediateScale
Output intermediate quantization scale.
Definition: Descriptors.hpp:1109
armnn::TensorInfo::GetShape
const TensorShape & GetShape() const
Definition: Tensor.hpp:191
armnn::LstmDescriptor::m_ForgetIntermediateScale
float m_ForgetIntermediateScale
Forget intermediate quantization scale.
Definition: Descriptors.hpp:1105
armnn::LstmInputParamsInfo::GetCellLayerNormWeights
const TensorInfo & GetCellLayerNormWeights() const
Definition: LstmParams.hpp:197
armnn::WorkloadInfo
Contains information about TensorInfos of a layer.
Definition: WorkloadInfo.hpp:16
armnn::NeonUnidirectionalSequenceLstmWorkload::NeonUnidirectionalSequenceLstmWorkload
NeonUnidirectionalSequenceLstmWorkload(const UnidirectionalSequenceLstmQueueDescriptor &descriptor, const WorkloadInfo &info)
Definition: NeonUnidirectionalSequenceLstmWorkload.cpp:33
armnn::LstmInputParamsInfo::GetCellToInputWeights
const TensorInfo & GetCellToInputWeights() const
Definition: LstmParams.hpp:153
armnn::LstmDescriptor::m_ClippingThresCell
float m_ClippingThresCell
Clipping threshold value for the cell state.
Definition: Descriptors.hpp:1089
armnn::LstmInputParamsInfo::GetCellToForgetWeights
const TensorInfo & GetCellToForgetWeights() const
Definition: LstmParams.hpp:157
armnn::OriginsDescriptor
An OriginsDescriptor for the ConcatLayer.
Definition: Descriptors.hpp:181
armnn::ViewsDescriptor::SetViewSize
Status SetViewSize(uint32_t view, uint32_t coord, uint32_t value)
Set the size of the views.
Definition: Descriptors.cpp:315
armnn::QueueDescriptorWithParameters::m_Parameters
LayerDescriptor m_Parameters
Definition: WorkloadData.hpp:66
ARMNN_REPORT_PROFILING_WORKLOAD_DESC
#define ARMNN_REPORT_PROFILING_WORKLOAD_DESC(name, desc, infos, guid)
Definition: Profiling.hpp:227
armnn::LstmDescriptor::m_ProjectionEnabled
bool m_ProjectionEnabled
Enable/disable the projection layer.
Definition: Descriptors.hpp:1097
NeonTensorHandle.hpp
armnn::LstmInputParamsInfo::GetRecurrentToOutputWeights
const TensorInfo & GetRecurrentToOutputWeights() const
Definition: LstmParams.hpp:149
NumericCast.hpp
armnn::LstmDescriptor::m_ClippingThresProj
float m_ClippingThresProj
Clipping threshold value for the projection.
Definition: Descriptors.hpp:1091
armnn::TensorInfo::SetShape
void SetShape(const TensorShape &newShape)
Definition: Tensor.hpp:193
armnn::LstmInputParamsInfo::GetForgetLayerNormWeights
const TensorInfo & GetForgetLayerNormWeights() const
Definition: LstmParams.hpp:193
WorkloadUtils.hpp
armnn::NeonBaseWorkload< UnidirectionalSequenceLstmQueueDescriptor >
armnn::LstmInputParamsInfo::GetInputToOutputWeights
const TensorInfo & GetInputToOutputWeights() const
Definition: LstmParams.hpp:133
armnn::OriginsDescriptor::SetViewOriginCoord
Status SetViewOriginCoord(uint32_t view, uint32_t coord, uint32_t value)
@Brief Set the view origin coordinates.
Definition: Descriptors.cpp:167
armnn::TensorInfo::GetDataType
DataType GetDataType() const
Definition: Tensor.hpp:198
armnn::BoostLogSeverityMapping::info
@ info