aboutsummaryrefslogtreecommitdiff
path: root/Utils.cpp
blob: a5a6ef0ecea20881233ccd8dc35b1dad862f9949 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#define LOG_TAG "ArmnnDriver"

#include "Utils.hpp"

#include <armnnUtils/Permute.hpp>

#include <cassert>
#include <cinttypes>

using namespace android;
using namespace android::hardware;
using namespace android::hidl::memory::V1_0;

namespace armnn_driver
{
const armnn::PermutationVector g_DontPermute{};

namespace
{

void SwizzleAndroidNn4dTensorToArmNn(const armnn::TensorShape& inTensorShape, const void* input,
                                     void* output, size_t dataTypeSize, const armnn::PermutationVector& mappings)
{
    assert(inTensorShape.GetNumDimensions() == 4U);

    armnnUtils::Permute(armnnUtils::Permuted(inTensorShape, mappings), mappings, input, output, dataTypeSize);
}

} // anonymous namespace

void SwizzleAndroidNn4dTensorToArmNn(const armnn::TensorInfo& tensor, const void* input, void* output,
                                     const armnn::PermutationVector& mappings)
{
    assert(tensor.GetNumDimensions() == 4U);

    armnn::DataType dataType = tensor.GetDataType();
    switch (dataType)
    {
    case armnn::DataType::Float16:
    case armnn::DataType::Float32:
    case armnn::DataType::QuantisedAsymm8:
    case armnn::DataType::QuantizedSymm8PerAxis:
        SwizzleAndroidNn4dTensorToArmNn(tensor.GetShape(), input, output, armnn::GetDataTypeSize(dataType), mappings);
        break;
    default:
        ALOGW("Unknown armnn::DataType for swizzling");
        assert(0);
    }
}

void* GetMemoryFromPool(DataLocation location, const std::vector<android::nn::RunTimePoolInfo>& memPools)
{
    // find the location within the pool
    assert(location.poolIndex < memPools.size());

    const android::nn::RunTimePoolInfo& memPool = memPools[location.poolIndex];

    // Type android::nn::RunTimePoolInfo has changed between Android O and Android P, where
    // "buffer" has been made private and must be accessed via the accessor method "getBuffer".
#if defined(ARMNN_ANDROID_P) || defined(ARMNN_ANDROID_Q) // Use the new Android implementation.
    uint8_t* memPoolBuffer = memPool.getBuffer();
#else // Fallback to the old Android O implementation.
    uint8_t* memPoolBuffer = memPool.buffer;
#endif

    uint8_t* memory = memPoolBuffer + location.offset;

    return memory;
}

armnn::TensorInfo GetTensorInfoForOperand(const V1_0::Operand& operand)
{
    armnn::DataType type;

    switch (operand.type)
    {
        case V1_0::OperandType::TENSOR_FLOAT32:
            type = armnn::DataType::Float32;
            break;
        case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
            type = armnn::DataType::QuantisedAsymm8;
            break;
        case V1_0::OperandType::TENSOR_INT32:
            type = armnn::DataType::Signed32;
            break;
        default:
            throw UnsupportedOperand<V1_0::OperandType>(operand.type);
    }

    armnn::TensorInfo ret(operand.dimensions.size(), operand.dimensions.data(), type);

    ret.SetQuantizationScale(operand.scale);
    ret.SetQuantizationOffset(operand.zeroPoint);

    return ret;
}

#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2

armnn::TensorInfo GetTensorInfoForOperand(const V1_2::Operand& operand)
{
    using namespace armnn;

    DataType type;
    switch (operand.type)
    {
        case V1_2::OperandType::TENSOR_FLOAT32:
            type = armnn::DataType::Float32;
            break;
        case V1_2::OperandType::TENSOR_FLOAT16:
            type = armnn::DataType::Float16;
            break;
        case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
            type = armnn::DataType::QuantizedSymm8PerAxis;
            break;
        case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
            type = armnn::DataType::QuantisedAsymm8;
            break;
        case V1_2::OperandType::TENSOR_QUANT8_SYMM:
            type = armnn::DataType::QuantisedSymm8;
            break;
        case V1_2::OperandType::TENSOR_QUANT16_SYMM:
            type = armnn::DataType::QuantisedSymm16;
            break;
        case V1_2::OperandType::TENSOR_INT32:
            type = armnn::DataType::Signed32;
            break;
        default:
            throw UnsupportedOperand<V1_2::OperandType>(operand.type);
    }

    TensorInfo ret(operand.dimensions.size(), operand.dimensions.data(), type);
    if (type == DataType::QuantizedSymm8PerAxis)
    {
        // ExtraParams is expected to be of type channelQuant
        BOOST_ASSERT(operand.extraParams.getDiscriminator() ==
                     V1_2::Operand::ExtraParams::hidl_discriminator::channelQuant);

        auto perAxisQuantParams = operand.extraParams.channelQuant();

        ret.SetQuantizationScales(perAxisQuantParams.scales);
        ret.SetQuantizationDim(MakeOptional<unsigned int>(perAxisQuantParams.channelDim));
    }
    else
    {
        ret.SetQuantizationScale(operand.scale);
        ret.SetQuantizationOffset(operand.zeroPoint);
    }

    return ret;
}

#endif

std::string GetOperandSummary(const V1_0::Operand& operand)
{
    return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
        toString(operand.type);
}

#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2

std::string GetOperandSummary(const V1_2::Operand& operand)
{
    return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
           toString(operand.type);
}

#endif

using DumpElementFunction = void (*)(const armnn::ConstTensor& tensor,
    unsigned int elementIndex,
    std::ofstream& fileStream);

namespace
{
template <typename ElementType, typename PrintableType = ElementType>
void DumpTensorElement(const armnn::ConstTensor& tensor, unsigned int elementIndex, std::ofstream& fileStream)
{
    const ElementType* elements = reinterpret_cast<const ElementType*>(tensor.GetMemoryArea());
    fileStream << static_cast<PrintableType>(elements[elementIndex]) << ",";
}

constexpr const char* MemoryLayoutString(const armnn::ConstTensor& tensor)
{
    const char* str = "";

    switch (tensor.GetNumDimensions())
    {
        case 4:  { str = "(BHWC) "; break; }
        case 3:  { str = "(HWC) "; break; }
        case 2:  { str = "(HW) "; break; }
        default: { str = ""; break; }
    }

    return str;
}
} // namespace

void DumpTensor(const std::string& dumpDir,
    const std::string& requestName,
    const std::string& tensorName,
    const armnn::ConstTensor& tensor)
{
    // The dump directory must exist in advance.
    const std::string fileName = boost::str(boost::format("%1%/%2%_%3%.dump") % dumpDir % requestName % tensorName);

    std::ofstream fileStream;
    fileStream.open(fileName, std::ofstream::out | std::ofstream::trunc);

    if (!fileStream.good())
    {
        ALOGW("Could not open file %s for writing", fileName.c_str());
        return;
    }

    DumpElementFunction dumpElementFunction = nullptr;

    switch (tensor.GetDataType())
    {
        case armnn::DataType::Float32:
        {
            dumpElementFunction = &DumpTensorElement<float>;
            break;
        }
        case armnn::DataType::QuantisedAsymm8:
        {
            dumpElementFunction = &DumpTensorElement<uint8_t, uint32_t>;
            break;
        }
        case armnn::DataType::Signed32:
        {
            dumpElementFunction = &DumpTensorElement<int32_t>;
            break;
        }
        default:
        {
            dumpElementFunction = nullptr;
        }
    }

    if (dumpElementFunction != nullptr)
    {
        const unsigned int numDimensions = tensor.GetNumDimensions();

        const unsigned int batch = (numDimensions == 4) ? tensor.GetShape()[numDimensions - 4] : 1;

        const unsigned int height = (numDimensions >= 3)
                                    ? tensor.GetShape()[numDimensions - 3]
                                    : (numDimensions >= 2) ? tensor.GetShape()[numDimensions - 2] : 1;

        const unsigned int width = (numDimensions >= 3)
                                   ? tensor.GetShape()[numDimensions - 2]
                                   : (numDimensions >= 1) ? tensor.GetShape()[numDimensions - 1] : 0;

        const unsigned int channels = (numDimensions >= 3) ? tensor.GetShape()[numDimensions - 1] : 1;

        fileStream << "# Number of elements " << tensor.GetNumElements() << std::endl;
        fileStream << "# Dimensions " << MemoryLayoutString(tensor);
        fileStream << "[" << tensor.GetShape()[0];
        for (unsigned int d = 1; d < numDimensions; d++)
        {
            fileStream << "," << tensor.GetShape()[d];
        }
        fileStream << "]" << std::endl;

        for (unsigned int e = 0, b = 0; b < batch; ++b)
        {
            if (numDimensions >= 4)
            {
                fileStream << "# Batch " << b << std::endl;
            }
            for (unsigned int c = 0; c < channels; c++)
            {
                if (numDimensions >= 3)
                {
                    fileStream << "# Channel " << c << std::endl;
                }
                for (unsigned int h = 0; h < height; h++)
                {
                    for (unsigned int w = 0; w < width; w++, e += channels)
                    {
                        (*dumpElementFunction)(tensor, e, fileStream);
                    }
                    fileStream << std::endl;
                }
                e -= channels - 1;
                if (c < channels)
                {
                    e -= ((height * width) - 1) * channels;
                }
            }
            fileStream << std::endl;
        }
        fileStream << std::endl;
    }
    else
    {
        fileStream << "Cannot dump tensor elements: Unsupported data type "
            << static_cast<unsigned int>(tensor.GetDataType()) << std::endl;
    }

    if (!fileStream.good())
    {
        ALOGW("An error occurred when writing to file %s", fileName.c_str());
    }
}

void DumpJsonProfilingIfRequired(bool gpuProfilingEnabled,
                                 const std::string& dumpDir,
                                 armnn::NetworkId networkId,
                                 const armnn::IProfiler* profiler)
{
    // Check if profiling is required.
    if (!gpuProfilingEnabled)
    {
        return;
    }

    // The dump directory must exist in advance.
    if (dumpDir.empty())
    {
        return;
    }

    BOOST_ASSERT(profiler);

    // Set the name of the output profiling file.
    const std::string fileName = boost::str(boost::format("%1%/%2%_%3%.json")
                                            % dumpDir
                                            % std::to_string(networkId)
                                            % "profiling");

    // Open the ouput file for writing.
    std::ofstream fileStream;
    fileStream.open(fileName, std::ofstream::out | std::ofstream::trunc);

    if (!fileStream.good())
    {
        ALOGW("Could not open file %s for writing", fileName.c_str());
        return;
    }

    // Write the profiling info to a JSON file.
    profiler->Print(fileStream);
}

bool IsDynamicTensor(const armnn::TensorInfo& outputInfo)
{
    // Dynamic tensors have at least one 0-sized dimension
    return outputInfo.GetNumElements() == 0u;
}

} // namespace armnn_driver