// // Copyright © 2022 Arm Ltd and Contributors. All rights reserved. // SPDX-License-Identifier: MIT // #pragma once #include "DriverTestHelpers.hpp" #include #include using ArmnnDriver = armnn_driver::ArmnnDriver; using DriverOptions = armnn_driver::DriverOptions; using RequestArgument = V1_0::RequestArgument; #ifdef ARMNN_ANDROID_S #include #endif using namespace driverTestHelpers; using namespace android::hardware; namespace { template RequestArgument CreateRequestArgument(const std::vector& value, unsigned int poolIndex) { V1_0::DataLocation inputInloc = {}; inputInloc.poolIndex = poolIndex; inputInloc.offset = 0; inputInloc.length = value.size() * sizeof(T); RequestArgument inputRequestArgument = {}; inputRequestArgument.location = inputInloc; inputRequestArgument.dimensions = hidl_vec{}; return inputRequestArgument; } // Helper function to create an OperandLifeTime::NO_VALUE for testing. // To be used on optional input operands that have no values - these are valid and should be tested. V1_0::OperandLifeTime CreateNoValueLifeTime(const hidl_vec& dimensions) { // Only create a NO_VALUE for optional operands that have no elements if (dimensions.size() == 0 || dimensions[0] == 0) { return V1_0::OperandLifeTime::NO_VALUE; } return V1_0::OperandLifeTime::CONSTANT_COPY; } template void ExecuteModel(const HalModel& model, armnn_driver::ArmnnDriver& driver, const V1_0::Request& request) { android::sp preparedModel = PrepareModel(model, driver); if (preparedModel.get() != nullptr) { Execute(preparedModel, request); } } #if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) template<> void ExecuteModel(const armnn_driver::hal_1_2::HalPolicy::Model& model, armnn_driver::ArmnnDriver& driver, const V1_0::Request& request) { android::sp preparedModel = PrepareModel_1_2(model, driver); if (preparedModel.get() != nullptr) { Execute(preparedModel, request); } } #endif } // anonymous namespace // Add our own tests here since we fail the unidirectional sequence lstm // tests which Google supplies (because of non-const weights) template void UnidirectionalSequenceLstmTestImpl(const hidl_vec& inputDimensions, const std::vector& inputValue, const hidl_vec& inputToInputWeightsDimensions, const std::vector& inputToInputWeightsValue, const hidl_vec& inputToForgetWeightsDimensions, const std::vector& inputToForgetWeightsValue, const hidl_vec& inputToCellWeightsDimensions, const std::vector& inputToCellWeightsValue, const hidl_vec& inputToOutputWeightsDimensions, const std::vector& inputToOutputWeightsValue, const hidl_vec& recurrentToInputWeightsDimensions, const std::vector& recurrentToInputWeightsValue, const hidl_vec& recurrentToForgetWeightsDimensions, const std::vector& recurrentToForgetWeightsValue, const hidl_vec& recurrentToCellWeightsDimensions, const std::vector& recurrentToCellWeightsValue, const hidl_vec& recurrentToOutputWeightsDimensions, const std::vector& recurrentToOutputWeightsValue, const hidl_vec& cellToInputWeightsDimensions, const std::vector& cellToInputWeightsValue, const hidl_vec& cellToForgetWeightsDimensions, const std::vector& cellToForgetWeightsValue, const hidl_vec& cellToOutputWeightsDimensions, const std::vector& cellToOutputWeightsValue, const hidl_vec& inputGateBiasDimensions, const std::vector& inputGateBiasValue, const hidl_vec& forgetGateBiasDimensions, const std::vector& forgetGateBiasValue, const hidl_vec& cellBiasDimensions, const std::vector& cellBiasValue, const hidl_vec& outputGateBiasDimensions, const std::vector& outputGateBiasValue, const hidl_vec& projectionWeightsDimensions, const std::vector& projectionWeightsValue, const hidl_vec& projectionBiasDimensions, const std::vector& projectionBiasValue, const hidl_vec& outputStateInDimensions, const std::vector& outputStateInValue, const hidl_vec& cellStateInDimensions, const std::vector& cellStateInValue, const hidl_vec& activationFunctionDimensions, const std::vector& activationFunctionValue, const hidl_vec& cellClippingThresholdDimensions, const std::vector& cellClippingThresholdValue, const hidl_vec& projectionClippingThresholdDimensions, const std::vector& projectionClippingThresholdValue, const bool& timeMajorValue, const hidl_vec& inputLayerNormWeightsDimensions, const std::vector& inputLayerNormWeightsValue, const hidl_vec& forgetLayerNormWeightsDimensions, const std::vector& forgetLayerNormWeightsValue, const hidl_vec& cellLayerNormWeightsDimensions, const std::vector& cellLayerNormWeightsValue, const hidl_vec& outputLayerNormWeightsDimensions, const std::vector& outputLayerNormWeightsValue, const hidl_vec& outputDimensions, const std::vector& outputValue, const hidl_vec&, // outputStateOutDimensions, const std::vector&, // outputStateOutValue, const hidl_vec&, // cellStateOutDimensions, const std::vector&, // cellStateOutValue, armnn::Compute compute, float epsilonValue = 0) { auto driver = std::make_unique(DriverOptions(compute)); using Model = typename HalPolicy::Model; Model model = {}; // Inputs: // 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where // “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input. AddInputOperand(model, inputDimensions); // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size], where “num_units” corresponds to the number of cell units. AddTensorOperand(model, inputToInputWeightsDimensions, inputToInputWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(inputToInputWeightsDimensions)); // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. AddTensorOperand(model, inputToForgetWeightsDimensions, inputToForgetWeightsValue); // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. AddTensorOperand(model, inputToCellWeightsDimensions, inputToCellWeightsValue); // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. AddTensorOperand(model, inputToOutputWeightsDimensions, inputToOutputWeightsValue); // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e., // “num_units”), or the second dimension of the “projection_weights”, if defined. AddTensorOperand(model, recurrentToInputWeightsDimensions, recurrentToInputWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(recurrentToInputWeightsDimensions)); // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. AddTensorOperand(model, recurrentToForgetWeightsDimensions, recurrentToForgetWeightsValue); // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. AddTensorOperand(model, recurrentToCellWeightsDimensions, recurrentToCellWeightsValue); // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. AddTensorOperand(model, recurrentToOutputWeightsDimensions, recurrentToOutputWeightsValue); // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. AddTensorOperand(model, cellToInputWeightsDimensions, cellToInputWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(cellToInputWeightsDimensions)); // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. AddTensorOperand(model, cellToForgetWeightsDimensions, cellToForgetWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(cellToForgetWeightsDimensions)); // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. AddTensorOperand(model, cellToOutputWeightsDimensions, cellToOutputWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(cellToOutputWeightsDimensions)); // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. AddTensorOperand(model, inputGateBiasDimensions, inputGateBiasValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(inputGateBiasDimensions)); // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. AddTensorOperand(model, forgetGateBiasDimensions, forgetGateBiasValue); // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. AddTensorOperand(model, cellBiasDimensions, cellBiasValue); // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. AddTensorOperand(model, outputGateBiasDimensions, outputGateBiasValue); // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [output_size, num_units]. AddTensorOperand(model, projectionWeightsDimensions, projectionWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(projectionWeightsDimensions)); // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size]. AddTensorOperand(model, projectionBiasDimensions, projectionBiasValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(projectionBiasDimensions)); // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. AddInputOperand(model, outputStateInDimensions); // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units]. AddInputOperand(model, cellStateInDimensions); // Constant scalar values (the VTS test adds these as tensors of dim {}) // 20: The activation function: A value indicating the activation function: // 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid. AddTensorOperand(model, activationFunctionDimensions, activationFunctionValue, HalPolicy::OperandType::INT32); // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip]. // If set to 0.0 then clipping is disabled. AddTensorOperand(model, cellClippingThresholdDimensions, cellClippingThresholdValue, HalPolicy::OperandType::FLOAT32); // 22: The clipping threshold: for the output from the projection layer, such that values are bound within // [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled. AddTensorOperand(model, projectionClippingThresholdDimensions, projectionClippingThresholdValue, HalPolicy::OperandType::FLOAT32); // 23: Time-major if true, batch-major if false. AddBoolOperand(model, timeMajorValue); // Normalization: // 24:The input layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at input gate. AddTensorOperand(model, inputLayerNormWeightsDimensions, inputLayerNormWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(inputLayerNormWeightsDimensions)); // 25:The forget layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at forget gate. AddTensorOperand(model, forgetLayerNormWeightsDimensions, forgetLayerNormWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(forgetLayerNormWeightsDimensions)); // 26:The cell layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at cell gate. AddTensorOperand(model, cellLayerNormWeightsDimensions, cellLayerNormWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(cellLayerNormWeightsDimensions)); // 27:The output layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at output gate. AddTensorOperand(model, outputLayerNormWeightsDimensions, outputLayerNormWeightsValue, HalPolicy::OperandType::TENSOR_FLOAT32, CreateNoValueLifeTime(outputLayerNormWeightsDimensions)); // Outputs: // 00: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16. Shape: if time-major: // [max_time, batch_size, output_size] If batch-major: [batch_size, max_time, output_size] AddOutputOperand(model, outputDimensions); // 01: The hidden state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, output_size]. This output is optional and can be omitted. If this output // is present then output #2 must be present as well. //AddOutputOperand(model, hiddenStateOutDimensions); // 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, num_units]. This output is optional and can be omitted. //AddOutputOperand(model, cellStateOutDimensions); // make the lstm operation model.operations.resize(1); model.operations[0].type = HalPolicy::OperationType::UNIDIRECTIONAL_SEQUENCE_LSTM; model.operations[0].inputs = hidl_vec {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}; model.operations[0].outputs = hidl_vec {28}; // define the input values hidl_vec inputArguments; inputArguments.resize(3); inputArguments[0] = CreateRequestArgument(inputValue, 0); inputArguments[1] = CreateRequestArgument(outputStateInValue, 1); inputArguments[2] = CreateRequestArgument(cellStateInValue, 2); // define the expected output values hidl_vec outputArguments; outputArguments.resize(1); outputArguments[0] = CreateRequestArgument(outputValue, 3); V1_0::Request request = {}; request.inputs = inputArguments; request.outputs = outputArguments; // set the input data AddPoolAndSetData(inputValue.size(), request, inputValue.data()); AddPoolAndSetData(outputStateInValue.size(), request, outputStateInValue.data()); AddPoolAndSetData(cellStateInValue.size(), request, cellStateInValue.data()); // add memory for the outputs android::sp outputMemory = AddPoolAndGetData(outputValue.size(), request); float* outputData = static_cast(static_cast(outputMemory->getPointer())); // make the prepared model and run the execution ExecuteModel(model, *driver, request); // check the results if (epsilonValue != 0) { for (size_t i = 0; i < outputValue.size(); ++i) { DOCTEST_CHECK_MESSAGE(outputValue[i] == doctest::Approx(outputData[i]).epsilon(epsilonValue), "outputValue[" << i << "]: " << outputValue[i] << " != " << outputData[i]); } } else { for (size_t i = 0; i < outputValue.size(); ++i) { DOCTEST_CHECK_MESSAGE(outputValue[i] == doctest::Approx(outputData[i]), "outputValue[" << i << "]: " << outputValue[i] << " != " << outputData[i]); } } } template void UnidirectionalSequenceLstmLayerFloat32TestImpl(armnn::Compute compute) { uint32_t batchSize = 3; uint32_t timeSize = 2; uint32_t inputSize = 3; uint32_t outputSize = 4; uint32_t numUnits = outputSize; // Inputs: // 00: The input: A 3-D tensor of shape: If time-major: [max_time, batch_size, input_size] If batch-major: // [batch_size, max_time, input_size] where “max_time” is the number of timesteps (sequence length), // “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input. hidl_vec inputDimensions{batchSize, timeSize, inputSize}; std::vector inputValue{1., 2., 3., 4., 5., 4., 3., 2., 1., 2., 3., 4., 5., 4., 3., 2., 1., 2.}; // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size], where “num_units” corresponds to the number of cell units. hidl_vec inputToInputWeightsDimensions{numUnits, inputSize}; std::vector inputToInputWeightsValue{-0.49536117f, -0.0556083915f, -0.102400711f, -0.117484632f, 0.3298470976f, -0.1179017122f, 0.214305695f, 0.42135173085f, 0.003878414626f, -0.348303917f, -0.1881275477f, 0.0343011027f}; // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToForgetWeightsDimensions{numUnits, inputSize}; std::vector inputToForgetWeightsValue{0.2415594226f, 0.15400093799f, 0.4566498398f, -0.3810434485f, 0.268383264f, -0.009807467424f, -0.3522925403f, -0.24275735512f, -0.28344226125f, 0.13512269116f, -0.4932442977f, -0.10039821991f}; // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units, input_size]. hidl_vec inputToCellWeightsDimensions{numUnits, inputSize}; std::vector inputToCellWeightsValue{-0.2504855627f, 0.184490025045f, -0.2480507493f, 0.386399507f, -0.259465157985f, -0.16545993089f, -0.4230232555f, 0.341664791103f, -0.18127849691f, -0.2277662414f, -0.55275535589f, 0.34184026718f}; // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToOutputWeightsDimensions{numUnits, inputSize}; std::vector inputToOutputWeightsValue{0.2303854227f, 0.5218806862f, -0.4865379333f, 0.53969591851f, 0.23393625035f, -0.27140527306f, 0.50009280443f, 0.07511717046f, 0.3998299249f, -0.51717478049f, 0.1889653282f, -0.367323637f}; // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e., // “num_units”), or the second dimension of the “projection_weights”, if defined. hidl_vec recurrentToInputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToInputWeightsValue{-0.128009796112f, 0.1995525098f, -0.07745539397f, 0.1558421701f, -0.265254765766f, -0.38837709614f, -0.05636804124f, 0.4259087456f, 0.17628988623f, 0.3877420127f, 0.53300309181f, -0.0959980934f, 0.00302857416f, 0.3266998827f, -0.142509296562f, -0.04433270756f}; // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToForgetWeightsDimensions{numUnits, outputSize}; std::vector recurrentToForgetWeightsValue{-0.09499983487f, -0.08814888417f, -0.04834804721f, 0.1516668247f, -0.3967529535f, -0.06463699788f, 0.4952811002f, 0.003274492938f, -0.0968840941f, 0.17928104102f, 0.0031281141592f, -0.3387276584f, -0.3587934076f, 0.06705895066f, 0.22463923692f, 0.1961955726f}; // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToCellWeightsDimensions{numUnits, outputSize}; std::vector recurrentToCellWeightsValue{-0.21938985582f, -0.3023648226f, -0.1170005202f, -0.3509177422f, -0.4286288613f, 0.2726137042f, 0.09216640889f, -0.06551410215f, 0.20453298098f, 0.2393476665f, 0.11846517771f, 0.2630801796f, 0.3954237699f, -0.19407111404f, 0.30412107706f, -0.27342408554f}; // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToOutputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToOutputWeightsValue{-0.32921677827f, 0.32624614238f, -0.1388191282f, -0.17879831790f, -0.15185534954f, -0.16918526583f, -0.10087361183f, -0.5436913968f, 0.016758225858f, 0.30454617738f, -0.41493862867f, -0.005565764375f, -0.12584099173f, -0.12319286912f, 0.2407919466f, -0.08879069983f}; // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToInputWeightsDimensions{0}; std::vector cellToInputWeightsValue; // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToForgetWeightsDimensions{0}; std::vector cellToForgetWeightsValue; // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToOutputWeightsDimensions{0}; std::vector cellToOutputWeightsValue; // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec inputGateBiasDimensions{numUnits}; std::vector inputGateBiasValue(numUnits, 0.0f); // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec forgetGateBiasDimensions{numUnits}; std::vector forgetGateBiasValue(numUnits, 1.0f); // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellBiasDimensions{numUnits}; std::vector cellBiasValue(numUnits, 0.0f); // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec outputGateBiasDimensions{numUnits}; std::vector outputGateBiasValue(numUnits, 0.0f); // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [output_size, num_units]. hidl_vec projectionWeightsDimensions{0}; std::vector projectionWeightsValue; // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size]. hidl_vec projectionBiasDimensions{0}; std::vector projectionBiasValue; // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. hidl_vec outputStateInDimensions{batchSize, outputSize}; std::vector outputStateInValue(batchSize * outputSize, 0.0f); // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units]. hidl_vec cellStateInDimensions{batchSize, numUnits}; std::vector cellStateInValue(batchSize * numUnits, 0.0f); // Constant scalar values (the VTS test adds these as tensors of dim {}) // 20: The activation function: A value indicating the activation function: // 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid. hidl_vec activationFunctionDimensions{}; std::vector activationFunctionValue{4}; // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip]. // If set to 0.0 then clipping is disabled. hidl_vec cellClippingThresholdDimensions{}; std::vector cellClippingThresholdValue{10.0f}; // 22: The clipping threshold: for the output from the projection layer, such that values are bound within // [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled. hidl_vec projectionClippingThresholdDimensions{}; std::vector projectionClippingThresholdValue{0.f}; // 23: Time-major if true, batch-major if false. bool timeMajorValue = false; // Normalization: // 24:The input layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at input gate. hidl_vec inputLayerNormWeightsDimensions{0}; std::vector inputLayerNormWeightsValue; // 25:The forget layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at forget gate. hidl_vec forgetLayerNormWeightsDimensions{0}; std::vector forgetLayerNormWeightsValue; // 26:The cell layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at cell gate. hidl_vec cellLayerNormWeightsDimensions{0}; std::vector cellLayerNormWeightsValue; // 27:The output layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at output gate. hidl_vec outputLayerNormWeightsDimensions{0}; std::vector outputLayerNormWeightsValue; // Outputs: // 0: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16. Shape: if time-major: // [max_time, batch_size, output_size] If batch-major: [batch_size, max_time, output_size] hidl_vec outputDimensions{batchSize, timeSize, outputSize}; std::vector outputValue{-0.07149004f, -0.1621171f, -0.17516759f, -0.0232934225f, -0.16810727f, -0.41412935f, -0.5498753f, -0.00803578f, -0.06687349f, 0.204077631f, -0.4276504f, -0.03123213f, -0.12000261f, -0.0941918f, -0.45639035f, -0.02870186f, -0.03429216f, 0.20824050f, -0.6569892f, -0.004152651f, -0.10493034f, 0.14210969f, -0.58347696f, -0.03297536f}; // 1: The hidden state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, output_size]. This output is optional and can be omitted. If this output // is present then output #2 must be present as well. hidl_vec hiddenStateOutDimensions{batchSize, outputSize}; std::vector hiddenStateOutValue(batchSize * outputSize, 0.f); // 2: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, num_units]. This output is optional and can be omitted. hidl_vec cellStateOutDimensions{batchSize, numUnits}; std::vector cellStateOutValue(batchSize * numUnits, 0.f); UnidirectionalSequenceLstmTestImpl(inputDimensions, inputValue, inputToInputWeightsDimensions, inputToInputWeightsValue, inputToForgetWeightsDimensions, inputToForgetWeightsValue, inputToCellWeightsDimensions, inputToCellWeightsValue, inputToOutputWeightsDimensions, inputToOutputWeightsValue, recurrentToInputWeightsDimensions, recurrentToInputWeightsValue, recurrentToForgetWeightsDimensions, recurrentToForgetWeightsValue, recurrentToCellWeightsDimensions, recurrentToCellWeightsValue, recurrentToOutputWeightsDimensions, recurrentToOutputWeightsValue, cellToInputWeightsDimensions, cellToInputWeightsValue, cellToForgetWeightsDimensions, cellToForgetWeightsValue, cellToOutputWeightsDimensions, cellToOutputWeightsValue, inputGateBiasDimensions, inputGateBiasValue, forgetGateBiasDimensions, forgetGateBiasValue, cellBiasDimensions, cellBiasValue, outputGateBiasDimensions, outputGateBiasValue, projectionWeightsDimensions, projectionWeightsValue, projectionBiasDimensions, projectionBiasValue, outputStateInDimensions, outputStateInValue, cellStateInDimensions, cellStateInValue, activationFunctionDimensions, activationFunctionValue, cellClippingThresholdDimensions, cellClippingThresholdValue, projectionClippingThresholdDimensions, projectionClippingThresholdValue, timeMajorValue, inputLayerNormWeightsDimensions, inputLayerNormWeightsValue, forgetLayerNormWeightsDimensions, forgetLayerNormWeightsValue, cellLayerNormWeightsDimensions, cellLayerNormWeightsValue, outputLayerNormWeightsDimensions, outputLayerNormWeightsValue, outputDimensions, outputValue, hiddenStateOutDimensions, hiddenStateOutValue, cellStateOutDimensions, cellStateOutValue, compute); } template void UnidirectionalSequenceLstmLayerFloat32TimeMajorTestImpl(armnn::Compute compute) { uint32_t batchSize = 3; uint32_t timeSize = 2; uint32_t inputSize = 3; uint32_t outputSize = 4; uint32_t numUnits = outputSize; // Inputs: // 00: The input: A 3-D tensor of shape: If time-major: [max_time, batch_size, input_size] If batch-major: // [batch_size, max_time, input_size] where “max_time” is the number of timesteps (sequence length), // “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input. hidl_vec inputDimensions{timeSize, batchSize, inputSize}; std::vector inputValue{1., 2., 3., 4., 5., 4., 3., 2., 1., 2., 3., 4., 5., 4., 3., 2., 1., 2.}; // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size], where “num_units” corresponds to the number of cell units. hidl_vec inputToInputWeightsDimensions{numUnits, inputSize}; std::vector inputToInputWeightsValue{0.27277296781539917f, 0.3813590407371521f, -0.394489049911499f, 0.2782636880874634f, -0.3793870210647583f, -0.018918335437774658f, 0.2724653482437134f, -0.19314253330230713f, -0.2947450876235962f, -0.30253493785858154f, 0.4241350293159485f, -0.22560018301010132f}; // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToForgetWeightsDimensions{numUnits, inputSize}; std::vector inputToForgetWeightsValue{-0.2667974531650543f, -0.05505800247192383f, -0.20932340621948242f, -0.14345619082450867f, 0.09666192531585693f, -0.2604355812072754f, -0.2681812047958374f, -0.3314584493637085f, 0.4485899806022644f, -0.23467743396759033f, 0.5072842240333557f, -0.4192768931388855f}; // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units, input_size]. hidl_vec inputToCellWeightsDimensions{numUnits, inputSize}; std::vector inputToCellWeightsValue{-0.15782442688941956f, -0.027530014514923096f, 0.4789854884147644f, 0.23227906227111816f, 0.28259342908859253f, -0.030095696449279785f, 0.10071521997451782f, -0.08535495400428772f, 0.18563997745513916f, -0.3049069046974182f, -0.478048175573349f, 0.025234103202819824f}; // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToOutputWeightsDimensions{numUnits, inputSize}; std::vector inputToOutputWeightsValue{-0.04584759473800659f, -0.2716066539287567f, 0.012970447540283203f, -0.4729190170764923f, -0.37422770261764526f, 0.49352723360061646f, 0.3163864016532898f, -0.436781644821167f, -0.33074596524238586f, -0.32885751128196716f, -0.40959352254867554f, -0.2124689817428589f}; // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e., // “num_units”), or the second dimension of the “projection_weights”, if defined. hidl_vec recurrentToInputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToInputWeightsValue{0.23788475990f, -0.24948765337f, 0.50044941902f, 0.14431896805f, -0.115940228137f, -0.717082679f, -0.17208620906f, 0.17850610617f, -0.16702319684f, -0.11384502053f, -0.309785276245f, -0.3316611672f, 0.52380162477f, -0.06839632987f, -0.391478359627f, -0.10756178963f}; // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToForgetWeightsDimensions{numUnits, outputSize}; std::vector recurrentToForgetWeightsValue{0.11383482068f, 0.1676601767f, -0.08550968004f, 0.03399394089f, 0.08042152225f, -0.2133381964f, 0.05182432704f, 0.38161808255f, -0.5018365979f, -0.08043262364f, 0.07894329014f, -0.07547105155f, 0.12047368288f, 0.2986997961f, 0.0485043078f, -0.13372567296f}; // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToCellWeightsDimensions{numUnits, outputSize}; std::vector recurrentToCellWeightsValue{0.0433832928545f, 0.07587072294f, -0.120520234107f, 0.604576051f, -0.434353142986f, 0.009314475068f, 0.005085289478f, 0.08488202038f, -0.00025437487886f, 0.15245915082f, -0.1936587542f, 0.004754020f, -0.1582719236f, 0.3307867646f, 0.0236605107784f, 0.307716339826f}; // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToOutputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToOutputWeightsValue{-0.079031050201f, 0.041414566286f, -0.583727357285f, 0.1025384515f, -0.172372072937f, 0.09214124082f, 0.178184121827f, -0.2439443916f, 0.104485116899f, 0.2600405514f, 0.064414866268f, 0.24141204357f, 0.281875759363f, -0.14234502664f, 0.15126448862f, -0.24421440064f}; // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToInputWeightsDimensions{0}; std::vector cellToInputWeightsValue; // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToForgetWeightsDimensions{0}; std::vector cellToForgetWeightsValue; // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToOutputWeightsDimensions{0}; std::vector cellToOutputWeightsValue; // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec inputGateBiasDimensions{numUnits}; std::vector inputGateBiasValue(numUnits, 0.0f); // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec forgetGateBiasDimensions{numUnits}; std::vector forgetGateBiasValue(numUnits, 1.0f); // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellBiasDimensions{numUnits}; std::vector cellBiasValue(numUnits, 0.0f); // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec outputGateBiasDimensions{numUnits}; std::vector outputGateBiasValue(numUnits, 0.0f); // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [output_size, num_units]. hidl_vec projectionWeightsDimensions{0}; std::vector projectionWeightsValue; // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size]. hidl_vec projectionBiasDimensions{0}; std::vector projectionBiasValue; // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. hidl_vec outputStateInDimensions{batchSize, outputSize}; std::vector outputStateInValue(batchSize * outputSize, 0.0f); // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units]. hidl_vec cellStateInDimensions{batchSize, numUnits}; std::vector cellStateInValue(batchSize * numUnits, 0.0f); // Constant scalar values (the VTS test adds these as tensors of dim {}) // 20: The activation function: A value indicating the activation function: // 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid. hidl_vec activationFunctionDimensions{}; std::vector activationFunctionValue{4}; // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip]. // If set to 0.0 then clipping is disabled. hidl_vec cellClippingThresholdDimensions{}; std::vector cellClippingThresholdValue{10.0f}; // 22: The clipping threshold: for the output from the projection layer, such that values are bound within // [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled. hidl_vec projectionClippingThresholdDimensions{}; std::vector projectionClippingThresholdValue{0.f}; // 23: Time-major if true, batch-major if false. bool timeMajorValue = true; // Normalization: // 24:The input layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at input gate. hidl_vec inputLayerNormWeightsDimensions{0}; std::vector inputLayerNormWeightsValue; // 25:The forget layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at forget gate. hidl_vec forgetLayerNormWeightsDimensions{0}; std::vector forgetLayerNormWeightsValue; // 26:The cell layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at cell gate. hidl_vec cellLayerNormWeightsDimensions{0}; std::vector cellLayerNormWeightsValue; // 27:The output layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at output gate. hidl_vec outputLayerNormWeightsDimensions{0}; std::vector outputLayerNormWeightsValue; // Outputs: // 0: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16. Shape: if time-major: // [max_time, batch_size, output_size] If batch-major: [batch_size, max_time, output_size] hidl_vec outputDimensions{timeSize, batchSize, outputSize}; std::vector outputValue{0.135657698f, 0.124672532f, 0.0212090332f, -0.0530203655f, 0.106138252f, 0.0404792242f, 0.0151643595f, -0.00675163185f, -0.0128514022f, 0.0644884035f, 0.0709072053f, -0.0454045124f, 0.16288602f, 0.16649379f, 0.02770456f, -0.03698075f, 0.11171641f, 0.043119f , 0.0762981f , -0.01228541f, 0.10439701f, 0.21439962f, 0.11919238f, -0.08390583f}; // 1: The hidden state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, output_size]. This output is optional and can be omitted. If this output // is present then output #2 must be present as well. hidl_vec hiddenStateOutDimensions{batchSize, outputSize}; std::vector hiddenStateOutValue(batchSize * outputSize, 0.f); // 2: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, num_units]. This output is optional and can be omitted. hidl_vec cellStateOutDimensions{batchSize, numUnits}; std::vector cellStateOutValue(batchSize * numUnits, 0.f); UnidirectionalSequenceLstmTestImpl(inputDimensions, inputValue, inputToInputWeightsDimensions, inputToInputWeightsValue, inputToForgetWeightsDimensions, inputToForgetWeightsValue, inputToCellWeightsDimensions, inputToCellWeightsValue, inputToOutputWeightsDimensions, inputToOutputWeightsValue, recurrentToInputWeightsDimensions, recurrentToInputWeightsValue, recurrentToForgetWeightsDimensions, recurrentToForgetWeightsValue, recurrentToCellWeightsDimensions, recurrentToCellWeightsValue, recurrentToOutputWeightsDimensions, recurrentToOutputWeightsValue, cellToInputWeightsDimensions, cellToInputWeightsValue, cellToForgetWeightsDimensions, cellToForgetWeightsValue, cellToOutputWeightsDimensions, cellToOutputWeightsValue, inputGateBiasDimensions, inputGateBiasValue, forgetGateBiasDimensions, forgetGateBiasValue, cellBiasDimensions, cellBiasValue, outputGateBiasDimensions, outputGateBiasValue, projectionWeightsDimensions, projectionWeightsValue, projectionBiasDimensions, projectionBiasValue, outputStateInDimensions, outputStateInValue, cellStateInDimensions, cellStateInValue, activationFunctionDimensions, activationFunctionValue, cellClippingThresholdDimensions, cellClippingThresholdValue, projectionClippingThresholdDimensions, projectionClippingThresholdValue, timeMajorValue, inputLayerNormWeightsDimensions, inputLayerNormWeightsValue, forgetLayerNormWeightsDimensions, forgetLayerNormWeightsValue, cellLayerNormWeightsDimensions, cellLayerNormWeightsValue, outputLayerNormWeightsDimensions, outputLayerNormWeightsValue, outputDimensions, outputValue, hiddenStateOutDimensions, hiddenStateOutValue, cellStateOutDimensions, cellStateOutValue, compute); } template void UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionTestImpl(armnn::Compute compute) { uint32_t batchSize = 2; uint32_t timeSize = 3; uint32_t inputSize = 4; uint32_t outputSize = 5; uint32_t numUnits = 6; // Inputs: // 00: The input: A 3-D tensor of shape: If time-major: [max_time, batch_size, input_size] If batch-major: // [batch_size, max_time, input_size] where “max_time” is the number of timesteps (sequence length), // “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input. hidl_vec inputDimensions{batchSize, timeSize, inputSize}; std::vector inputValue{1., 2., 3., 4., 5., 4., 3., 2., 1., 2., 3., 4., 5., 4., 3., 2., 1., 2., 1., 2., 3., 4., 5., 4.}; // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size], where “num_units” corresponds to the number of cell units. hidl_vec inputToInputWeightsDimensions{numUnits, inputSize}; std::vector inputToInputWeightsValue{0.021393683f, 0.06124551f, 0.046905167f, -0.014657677f, -0.03149463f, 0.09171803f, 0.14647801f, 0.10797193f, -0.0057968358f, 0.0019193048f, -0.2726754f, 0.10154029f, -0.018539885f, 0.080349885f, -0.10262385f, -0.022599787f, -0.09121155f, -0.008675967f, -0.045206103f, -0.0821282f, -0.008045952f, 0.015478081f, 0.055217247f, 0.038719587f}; // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToForgetWeightsDimensions{numUnits, inputSize}; std::vector inputToForgetWeightsValue{-0.0018401089f, -0.004852237f, 0.03698424f, 0.014181704f, 0.028273236f, -0.016726194f, -0.05249759f, -0.10204261f, 0.00861066f, -0.040979505f, -0.009899187f, 0.01923892f, -0.028177269f, -0.08535103f, -0.14585495f, 0.10662567f, -0.01909731f, -0.017883534f, -0.0047269356f, -0.045103323f, 0.0030784295f, 0.076784775f, 0.07463696f, 0.094531395f}; // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units, input_size]. hidl_vec inputToCellWeightsDimensions{numUnits, inputSize}; std::vector inputToCellWeightsValue{-0.04580283f, -0.09549462f, -0.032418985f, -0.06454633f, -0.043528453f, 0.043018587f, -0.049152344f, -0.12418144f, -0.078985475f, -0.07596889f, 0.019484362f, -0.11434962f, -0.0074034138f, -0.06314844f, -0.092981495f, 0.0062155537f, -0.025034338f, -0.0028890965f, 0.048929527f, 0.06235075f, 0.10665918f, -0.032036792f, -0.08505916f, -0.10843358f}; // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToOutputWeightsDimensions{numUnits, inputSize}; std::vector inputToOutputWeightsValue{-0.0998932f, -0.07201956f, -0.052803773f, -0.15629593f, -0.15001918f, -0.07650751f, 0.02359855f, -0.075155355f, -0.08037709f, -0.15093534f, 0.029517552f, -0.04751393f, 0.010350531f, -0.02664851f, -0.016839722f, -0.023121163f, 0.0077019283f, 0.012851257f, -0.05040649f, -0.0129761f, -0.021737747f, -0.038305793f, -0.06870586f, -0.01481247f}; // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e., // “num_units”), or the second dimension of the “projection_weights”, if defined. hidl_vec recurrentToInputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToInputWeightsValue{-0.001374326f, -0.078856036f, 0.10672688f, 0.029162422f, -0.11585556f, 0.02557986f, -0.13446963f, -0.035785314f, -0.01244275f, 0.025961924f, -0.02337298f, -0.044228926f, -0.055839065f, -0.046598054f, -0.010546039f, -0.06900766f, 0.027239809f, 0.022582639f, -0.013296484f, -0.05459212f, 0.08981f, -0.045407712f, 0.08682226f, -0.06867011f, -0.14390695f, -0.02916037f, 0.000996957f, 0.091420636f, 0.14283475f, -0.07390571f}; // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToForgetWeightsDimensions{numUnits, outputSize}; std::vector recurrentToForgetWeightsValue{-0.057784554f, -0.026057621f, -0.068447545f, -0.022581743f, 0.14811787f, 0.10826372f, 0.09471067f, 0.03987225f, -0.0039523416f, 0.00030638507f, 0.053185795f, 0.10572994f, 0.08414449f, -0.022036452f, -0.00066928595f, -0.09203576f, 0.032950465f, -0.10985798f, -0.023809856f, 0.0021431844f, -0.02196096f, -0.00326074f, 0.00058621005f, -0.074678116f, -0.06193199f, 0.055729095f, 0.03736828f, 0.020123724f, 0.061878487f, -0.04729229f}; // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToCellWeightsDimensions{numUnits, outputSize}; std::vector recurrentToCellWeightsValue{-0.037322544f, 0.018592842f, 0.0056175636f, -0.06253426f, 0.055647098f, -0.05713207f, -0.05626563f, 0.005559383f, 0.03375411f, -0.025757805f, -0.088049285f, 0.06017052f, -0.06570978f, 0.007384076f, 0.035123326f, -0.07920549f, 0.053676967f, 0.044480428f, -0.07663568f, 0.0071805613f, 0.08089997f, 0.05143358f, 0.038261272f, 0.03339287f, -0.027673481f, 0.044746667f, 0.028349208f, 0.020090483f, -0.019443132f, -0.030755889f}; // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToOutputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToOutputWeightsValue{0.025825322f, -0.05813119f, 0.09495884f, -0.045984812f,-0.01255415f, -0.0026479573f, -0.08196161f, -0.054914974f, -0.0046604523f, -0.029587349f, -0.044576716f, -0.07480124f, -0.082868785f, 0.023254942f, 0.027502948f, -0.0039728214f, -0.08683098f, -0.08116779f, -0.014675607f, -0.037924774f, -0.023314456f, -0.007401714f, -0.09255757f, 0.029460307f, -0.08829125f, -0.005139627f, -0.08989442f, -0.0555066f, 0.13596267f, 0.025062224f}; // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToInputWeightsDimensions{numUnits}; std::vector cellToInputWeightsValue{0.040369894f, 0.030746894f, 0.24704495f, 0.018586371f, -0.037586458f, -0.15312155f}; // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToForgetWeightsDimensions{numUnits}; std::vector cellToForgetWeightsValue{-0.01998659f, -0.15568835f, -0.24248174f, -0.012770197f, 0.041331276f, -0.072311886f}; // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToOutputWeightsDimensions{numUnits}; std::vector cellToOutputWeightsValue{0.08286371f, -0.08261836f, -0.51210177f, 0.002913762f, 0.17764764f, -0.5495371f}; // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec inputGateBiasDimensions{numUnits}; std::vector inputGateBiasValue{0.02234832f, 0.14757581f, 0.18176508f, 0.10380666f, 0.053110216f, -0.06928846f}; // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec forgetGateBiasDimensions{numUnits}; std::vector forgetGateBiasValue{0.035185695f, -0.042891346f, -0.03032477f, 0.23027696f, 0.11098921f, 0.08989442f}; // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellBiasDimensions{numUnits}; std::vector cellBiasValue{-0.024379363f, 0.0055531194f, 0.23377132f, 0.033463873f, -0.1483596f, 0.029460307f}; // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec outputGateBiasDimensions{numUnits}; std::vector outputGateBiasValue{0.046159424f, -0.0012809046f, 0.03563469f, 0.12648113f, 0.027195795f, 0.35373217f}; // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [output_size, num_units]. hidl_vec projectionWeightsDimensions{numUnits, outputSize}; std::vector projectionWeightsValue{-0.009802181f, 0.09401916f, 0.0717386f, -0.13895074f, 0.09641832f, 0.060420845f, 0.08539281f, 0.054285463f, 0.061395317f, 0.034448683f, -0.042991187f, 0.019801661f, -0.16840284f, -0.015726732f, -0.23041931f, -0.024478018f, -0.10959692f, -0.013875541f, 0.18600968f, -0.061274476f, 0.0138165f, -0.08160894f, -0.07661644f, 0.032372914f, 0.16169067f, 0.22465782f, -0.03993472f, -0.004017731f, 0.08633481f, -0.28869787f}; // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size]. hidl_vec projectionBiasDimensions{outputSize}; std::vector projectionBiasValue(outputSize, 0.f); // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. hidl_vec outputStateInDimensions{batchSize, outputSize}; std::vector outputStateInValue(batchSize * outputSize, 0.f); // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units]. hidl_vec cellStateInDimensions{batchSize, numUnits}; std::vector cellStateInValue(batchSize * numUnits, 0.f); // Constant scalar values (the VTS test adds these as tensors of dim {}) // 20: The activation function: A value indicating the activation function: // 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid. hidl_vec activationFunctionDimensions{}; std::vector activationFunctionValue{4}; // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip]. // If set to 0.0 then clipping is disabled. hidl_vec cellClippingThresholdDimensions{}; std::vector cellClippingThresholdValue{10.0f}; // 22: The clipping threshold: for the output from the projection layer, such that values are bound within // [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled. hidl_vec projectionClippingThresholdDimensions{}; std::vector projectionClippingThresholdValue{0.f}; // 23: Time-major if true, batch-major if false. bool timeMajorValue = false; // Normalization: // 24:The input layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at input gate. hidl_vec inputLayerNormWeightsDimensions{0}; std::vector inputLayerNormWeightsValue; // 25:The forget layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at forget gate. hidl_vec forgetLayerNormWeightsDimensions{0}; std::vector forgetLayerNormWeightsValue; // 26:The cell layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at cell gate. hidl_vec cellLayerNormWeightsDimensions{0}; std::vector cellLayerNormWeightsValue; // 27:The output layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at output gate. hidl_vec outputLayerNormWeightsDimensions{0}; std::vector outputLayerNormWeightsValue; // Outputs: // 0: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16. Shape: if time-major: // [max_time, batch_size, output_size] If batch-major: [batch_size, max_time, output_size] hidl_vec outputDimensions{batchSize, timeSize, outputSize}; std::vector outputValue{-0.0135612f, -0.0263441f, 0.0314008f, -0.00883455f, 0.00763052f, -0.00126877f, -0.0292959f, 0.0449957f, -0.00976195f, -0.00492338f, -0.0175702f, -0.0431753f, 0.0597117f, -0.0169154f, 0.0142087f, 0.00472515f, -0.0196355f, 0.0342524f, -0.00407936f, -0.0253189f, -0.00512944f, -0.0293754f, 0.0512771f, -0.0151874f, -0.0246433f, -0.00744986f, -0.0345103f, 0.0450666f, -0.00944991f, 0.0127171f}; // 1: The hidden state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, output_size]. This output is optional and can be omitted. If this output // is present then output #2 must be present as well. hidl_vec hiddenStateOutDimensions{batchSize, outputSize}; std::vector hiddenStateOutValue(batchSize * outputSize, 0.f); // 2: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, num_units]. This output is optional and can be omitted. hidl_vec cellStateOutDimensions{batchSize, numUnits}; std::vector cellStateOutValue(batchSize * numUnits, 0.f); UnidirectionalSequenceLstmTestImpl(inputDimensions, inputValue, inputToInputWeightsDimensions, inputToInputWeightsValue, inputToForgetWeightsDimensions, inputToForgetWeightsValue, inputToCellWeightsDimensions, inputToCellWeightsValue, inputToOutputWeightsDimensions, inputToOutputWeightsValue, recurrentToInputWeightsDimensions, recurrentToInputWeightsValue, recurrentToForgetWeightsDimensions, recurrentToForgetWeightsValue, recurrentToCellWeightsDimensions, recurrentToCellWeightsValue, recurrentToOutputWeightsDimensions, recurrentToOutputWeightsValue, cellToInputWeightsDimensions, cellToInputWeightsValue, cellToForgetWeightsDimensions, cellToForgetWeightsValue, cellToOutputWeightsDimensions, cellToOutputWeightsValue, inputGateBiasDimensions, inputGateBiasValue, forgetGateBiasDimensions, forgetGateBiasValue, cellBiasDimensions, cellBiasValue, outputGateBiasDimensions, outputGateBiasValue, projectionWeightsDimensions, projectionWeightsValue, projectionBiasDimensions, projectionBiasValue, outputStateInDimensions, outputStateInValue, cellStateInDimensions, cellStateInValue, activationFunctionDimensions, activationFunctionValue, cellClippingThresholdDimensions, cellClippingThresholdValue, projectionClippingThresholdDimensions, projectionClippingThresholdValue, timeMajorValue, inputLayerNormWeightsDimensions, inputLayerNormWeightsValue, forgetLayerNormWeightsDimensions, forgetLayerNormWeightsValue, cellLayerNormWeightsDimensions, cellLayerNormWeightsValue, outputLayerNormWeightsDimensions, outputLayerNormWeightsValue, outputDimensions, outputValue, hiddenStateOutDimensions, hiddenStateOutValue, cellStateOutDimensions, cellStateOutValue, compute, 0.0031454); } template void UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionWithLayerNormTestImpl(armnn::Compute compute) { uint32_t batchSize = 3; uint32_t timeSize = 2; uint32_t inputSize = 3; uint32_t outputSize = 4; uint32_t numUnits = 5; // Inputs: // 00: The input: A 3-D tensor of shape: If time-major: [max_time, batch_size, input_size] If batch-major: // [batch_size, max_time, input_size] where “max_time” is the number of timesteps (sequence length), // “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input. hidl_vec inputDimensions{batchSize, timeSize, inputSize}; std::vector inputValue{1., 2., 3., 4., 5., 4., 3., 2., 1., 2., 3., 4., 5., 4., 3., 2., 1., 2.}; // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size], where “num_units” corresponds to the number of cell units. hidl_vec inputToInputWeightsDimensions{numUnits, inputSize}; std::vector inputToInputWeightsValue{-0.49536117f, -0.0556083915f, -0.102400711f, -0.117484632f, 0.3298470976f, -0.1179017122f, 0.214305695f, 0.42135173085f, 0.003878414626f, -0.348303917f, -0.1881275477f, 0.0343011027f, -0.38837709614f, -0.05636804124f, 0.4259087456f}; // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToForgetWeightsDimensions{numUnits, inputSize}; std::vector inputToForgetWeightsValue{0.2415594226f, 0.15400093799f, 0.4566498398f, -0.3810434485f, 0.268383264f, -0.009807467424f, -0.3522925403f, -0.24275735512f, -0.28344226125f, 0.13512269116f, -0.4932442977f, -0.10039821991f, 0.2726137042f, 0.09216640889f, -0.06551410215f}; // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units, input_size]. hidl_vec inputToCellWeightsDimensions{numUnits, inputSize}; std::vector inputToCellWeightsValue{-0.2504855627f, 0.184490025045f, -0.2480507493f, 0.386399507f, -0.259465157985f, -0.16545993089f, -0.4230232555f, 0.341664791103f, -0.18127849691f, -0.2277662414f, -0.55275535589f, 0.34184026718f, 0.3954237699f, -0.19407111404f, 0.30412107706f}; // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToOutputWeightsDimensions{numUnits, inputSize}; std::vector inputToOutputWeightsValue{0.2303854227f, 0.5218806862f, -0.4865379333f, 0.53969591851f, 0.23393625035f, -0.27140527306f, 0.50009280443f, 0.07511717046f, 0.3998299249f, -0.51717478049f, 0.1889653282f, -0.367323637f, -0.12584099173f, -0.12319286912f, 0.2407919466f}; // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e., // “num_units”), or the second dimension of the “projection_weights”, if defined. hidl_vec recurrentToInputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToInputWeightsValue{-0.128009796112f, 0.1995525098f, -0.07745539397f, 0.1558421701f, -0.265254765766f, -0.38837709614f, -0.05636804124f, 0.4259087456f, 0.17628988623f, 0.3877420127f, 0.53300309181f, -0.0959980934f, 0.00302857416f, 0.3266998827f, -0.142509296562f, -0.04433270756f, 0.54066205f, -0.32668582f, -0.43562764f, -0.56094903f}; // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToForgetWeightsDimensions{numUnits, outputSize}; std::vector recurrentToForgetWeightsValue{-0.09499983487f, -0.08814888417f, -0.04834804721f, 0.1516668247f, -0.3967529535f, -0.06463699788f, 0.4952811002f, 0.003274492938f, -0.0968840941f, 0.17928104102f, 0.0031281141592f, -0.3387276584f, -0.3587934076f, 0.06705895066f, 0.22463923692f, 0.1961955726f, 0.01841056f, -0.32764608f, -0.33027974f, -0.10826075f}; // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToCellWeightsDimensions{numUnits, outputSize}; std::vector recurrentToCellWeightsValue{-0.21938985582f, -0.3023648226f, -0.1170005202f, -0.3509177422f, -0.4286288613f, 0.2726137042f, 0.09216640889f, -0.06551410215f, 0.20453298098f, 0.2393476665f, 0.11846517771f, 0.2630801796f, 0.3954237699f, -0.19407111404f, 0.30412107706f, -0.27342408554f, 0.19069612f, -0.03026325f, -0.54532051f, 0.33003211f}; // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToOutputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToOutputWeightsValue{-0.32921677827f, 0.32624614238f, -0.1388191282f, -0.17879831790f,-0.15185534954f, -0.16918526583f, -0.10087361183f, -0.5436913968f, 0.016758225858f, 0.30454617738f, -0.41493862867f, -0.005565764375f, -0.12584099173f, -0.12319286912f, 0.2407919466f, -0.08879069983f, 0.11178309f, 0.09481031f, -0.26424935f, 0.46261835f}; // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToInputWeightsDimensions{numUnits}; std::vector cellToInputWeightsValue{0.05f, 0.1f, 0.25f, 0.15f, -0.02f}; // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToForgetWeightsDimensions{numUnits}; std::vector cellToForgetWeightsValue{-0.02f, -0.15f, -0.25f, -0.03f, 0.15f}; // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToOutputWeightsDimensions{numUnits}; std::vector cellToOutputWeightsValue{0.1f, -0.1f, -0.5f, 0.05f, 0.01f}; // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec inputGateBiasDimensions{numUnits}; std::vector inputGateBiasValue{0.03f, 0.15f, 0.22f, 0.38f, 0.05f}; // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec forgetGateBiasDimensions{numUnits}; std::vector forgetGateBiasValue{0.1f, -0.3f, -0.2f, 0.1f, 0.4f}; // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellBiasDimensions{numUnits}; std::vector cellBiasValue{-0.05f, 0.72f, 0.25f, 0.08f, 0.1f}; // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec outputGateBiasDimensions{numUnits}; std::vector outputGateBiasValue{0.05f, -0.01f, 0.2f, 0.1f, -0.2f}; // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [output_size, num_units]. hidl_vec projectionWeightsDimensions{numUnits, outputSize}; std::vector projectionWeightsValue{-0.1f, 0.2f, 0.01f, -0.2f, 0.1f, 0.5f, 0.3f, 0.08f, 0.07f, 0.2f, -0.4f, 0.2f, 0.5f, -0.4f, 0.3f, -0.2f, 0.3f, 0.08f, -0.07f, 0.2f}; // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size]. hidl_vec projectionBiasDimensions{outputSize}; std::vector projectionBiasValue(outputSize, 0.f); // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. hidl_vec outputStateInDimensions{batchSize, outputSize}; std::vector outputStateInValue(batchSize * outputSize, 0.f); // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units]. hidl_vec cellStateInDimensions{batchSize, numUnits}; std::vector cellStateInValue(batchSize * numUnits, 0.f); // Constant scalar values (the VTS test adds these as tensors of dim {}) // 20: The activation function: A value indicating the activation function: // 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid. hidl_vec activationFunctionDimensions{}; std::vector activationFunctionValue{4}; // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip]. // If set to 0.0 then clipping is disabled. hidl_vec cellClippingThresholdDimensions{}; std::vector cellClippingThresholdValue{10.0f}; // 22: The clipping threshold: for the output from the projection layer, such that values are bound within // [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled. hidl_vec projectionClippingThresholdDimensions{}; std::vector projectionClippingThresholdValue{0.f}; // 23: Time-major if true, batch-major if false. bool timeMajorValue = false; // Normalization: // 24:The input layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at input gate. hidl_vec inputLayerNormWeightsDimensions{numUnits}; std::vector inputLayerNormWeightsValue{0.1f, 0.2f, 0.3f, 0.5f, 0.8f}; // 25:The forget layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at forget gate. hidl_vec forgetLayerNormWeightsDimensions{numUnits}; std::vector forgetLayerNormWeightsValue{0.1f, 0.2f, 0.3f, 0.5f, 0.2f}; // 26:The cell layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at cell gate. hidl_vec cellLayerNormWeightsDimensions{numUnits}; std::vector cellLayerNormWeightsValue{0.7f, 0.2f, 0.3f, 0.8f, 0.5f}; // 27:The output layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at output gate. hidl_vec outputLayerNormWeightsDimensions{numUnits}; std::vector outputLayerNormWeightsValue{0.6f, 0.2f, 0.2f, 0.5f, 0.1f}; // Outputs: // 0: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16. Shape: if time-major: // [max_time, batch_size, output_size] If batch-major: [batch_size, max_time, output_size] hidl_vec outputDimensions{batchSize, timeSize, outputSize}; std::vector outputValue{0.0642256f, 0.0343966f, 0.184122f, 0.114717f, 0.11458f, 0.0407109f, 0.300327f, 0.174301f, 0.0864761f, 0.0362912f, 0.178635f, 0.115689f, 0.108008f, 0.0386623f, 0.273471f, 0.167115f, 0.0859545f, 0.0331481f, 0.186051f, 0.11888f, 0.106649f, 0.0276847f, 0.229863f, 0.166958f}; // 1: The hidden state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, output_size]. This output is optional and can be omitted. If this output // is present then output #2 must be present as well. hidl_vec hiddenStateOutDimensions{batchSize, outputSize}; std::vector hiddenStateOutValue(batchSize * outputSize, 0.f); // 2: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, num_units]. This output is optional and can be omitted. hidl_vec cellStateOutDimensions{batchSize, numUnits}; std::vector cellStateOutValue(batchSize * numUnits, 0.f); UnidirectionalSequenceLstmTestImpl(inputDimensions, inputValue, inputToInputWeightsDimensions, inputToInputWeightsValue, inputToForgetWeightsDimensions, inputToForgetWeightsValue, inputToCellWeightsDimensions, inputToCellWeightsValue, inputToOutputWeightsDimensions, inputToOutputWeightsValue, recurrentToInputWeightsDimensions, recurrentToInputWeightsValue, recurrentToForgetWeightsDimensions, recurrentToForgetWeightsValue, recurrentToCellWeightsDimensions, recurrentToCellWeightsValue, recurrentToOutputWeightsDimensions, recurrentToOutputWeightsValue, cellToInputWeightsDimensions, cellToInputWeightsValue, cellToForgetWeightsDimensions, cellToForgetWeightsValue, cellToOutputWeightsDimensions, cellToOutputWeightsValue, inputGateBiasDimensions, inputGateBiasValue, forgetGateBiasDimensions, forgetGateBiasValue, cellBiasDimensions, cellBiasValue, outputGateBiasDimensions, outputGateBiasValue, projectionWeightsDimensions, projectionWeightsValue, projectionBiasDimensions, projectionBiasValue, outputStateInDimensions, outputStateInValue, cellStateInDimensions, cellStateInValue, activationFunctionDimensions, activationFunctionValue, cellClippingThresholdDimensions, cellClippingThresholdValue, projectionClippingThresholdDimensions, projectionClippingThresholdValue, timeMajorValue, inputLayerNormWeightsDimensions, inputLayerNormWeightsValue, forgetLayerNormWeightsDimensions, forgetLayerNormWeightsValue, cellLayerNormWeightsDimensions, cellLayerNormWeightsValue, outputLayerNormWeightsDimensions, outputLayerNormWeightsValue, outputDimensions, outputValue, hiddenStateOutDimensions, hiddenStateOutValue, cellStateOutDimensions, cellStateOutValue, compute); } template void UnidirectionalSequenceLstmWithCifgWithPeepholeNoProjectionTestImpl(armnn::Compute compute) { uint32_t batchSize = 3; uint32_t timeSize = 2; uint32_t inputSize = 3; uint32_t outputSize = 4; uint32_t numUnits = outputSize; // Inputs: // 00: The input: A 3-D tensor of shape: If time-major: [max_time, batch_size, input_size] If batch-major: // [batch_size, max_time, input_size] where “max_time” is the number of timesteps (sequence length), // “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input. hidl_vec inputDimensions{batchSize, timeSize, inputSize}; std::vector inputValue{1., 2., 3., 4., 5., 4., 3., 2., 1., 2., 3., 4., 5., 4., 3., 2., 1., 2.}; // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size], where “num_units” corresponds to the number of cell units. hidl_vec inputToInputWeightsDimensions{0}; std::vector inputToInputWeightsValue; // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToForgetWeightsDimensions{numUnits, inputSize}; std::vector inputToForgetWeightsValue{0.2415594226f, 0.15400093799f, 0.4566498398f, -0.3810434485f, 0.268383264f, -0.009807467424f, -0.3522925403f, -0.24275735512f, -0.28344226125f, 0.13512269116f, -0.4932442977f, -0.10039821991f}; // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units, input_size]. hidl_vec inputToCellWeightsDimensions{numUnits, inputSize}; std::vector inputToCellWeightsValue{-0.2504855627f, 0.184490025045f, -0.2480507493f, 0.386399507f, -0.259465157985f, -0.16545993089f, -0.4230232555f, 0.341664791103f, -0.18127849691f, -0.2277662414f, -0.55275535589f, 0.34184026718f}; // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, input_size]. hidl_vec inputToOutputWeightsDimensions{numUnits, inputSize}; std::vector inputToOutputWeightsValue{0.2303854227f, 0.5218806862f, -0.4865379333f, 0.53969591851f, 0.23393625035f, -0.27140527306f, 0.50009280443f, 0.07511717046f, 0.3998299249f, -0.51717478049f, 0.1889653282f, -0.367323637f}; // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e., // “num_units”), or the second dimension of the “projection_weights”, if defined. hidl_vec recurrentToInputWeightsDimensions{0}; std::vector recurrentToInputWeightsValue; // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToForgetWeightsDimensions{numUnits, outputSize}; std::vector recurrentToForgetWeightsValue{-0.09499983487f, -0.08814888417f, -0.04834804721f, 0.1516668247f, -0.3967529535f, -0.06463699788f, 0.4952811002f, 0.003274492938f, -0.0968840941f, 0.17928104102f, 0.0031281141592f, -0.3387276584f, -0.3587934076f, 0.06705895066f, 0.22463923692f, 0.1961955726f}; // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToCellWeightsDimensions{numUnits, outputSize}; std::vector recurrentToCellWeightsValue{-0.21938985582f, -0.3023648226f, -0.1170005202f, -0.3509177422f, -0.4286288613f, 0.2726137042f, 0.09216640889f, -0.06551410215f, 0.20453298098f, 0.2393476665f, 0.11846517771f, 0.2630801796f, 0.3954237699f, -0.19407111404f, 0.30412107706f, -0.27342408554f}; // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [num_units, output_size]. hidl_vec recurrentToOutputWeightsDimensions{numUnits, outputSize}; std::vector recurrentToOutputWeightsValue{-0.32921677827f, 0.32624614238f, -0.1388191282f, -0.17879831790f, -0.15185534954f, -0.16918526583f, -0.10087361183f, -0.5436913968f, 0.016758225858f, 0.30454617738f, -0.41493862867f, -0.005565764375f, -0.12584099173f, -0.12319286912f, 0.2407919466f, -0.08879069983f}; // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToInputWeightsDimensions{0}; std::vector cellToInputWeightsValue; // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToForgetWeightsDimensions{numUnits}; std::vector cellToForgetWeightsValue{0.47485286f, -0.51955009f, -0.24458408f, 0.31544167f}; // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellToOutputWeightsDimensions{numUnits}; std::vector cellToOutputWeightsValue{-0.17135078f, 0.82760304f, 0.85573703f, -0.77109635f}; // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec inputGateBiasDimensions{0}; std::vector inputGateBiasValue; // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec forgetGateBiasDimensions{numUnits}; std::vector forgetGateBiasValue{1., 1., 1., 1.}; // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec cellBiasDimensions{numUnits}; std::vector cellBiasValue{0., 0., 0., 0.}; // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units]. hidl_vec outputGateBiasDimensions{numUnits}; std::vector outputGateBiasValue{0., 0., 0., 0.}; // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape // [output_size, num_units]. hidl_vec projectionWeightsDimensions{0}; std::vector projectionWeightsValue; // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size]. hidl_vec projectionBiasDimensions{0}; std::vector projectionBiasValue; // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. hidl_vec outputStateInDimensions{batchSize, outputSize}; std::vector outputStateInValue(batchSize * outputSize, 0.f); // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units]. hidl_vec cellStateInDimensions{batchSize, numUnits}; std::vector cellStateInValue(batchSize * numUnits, 0.f); // Constant scalar values (the VTS test adds these as tensors of dim {}) // 20: The activation function: A value indicating the activation function: // 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid. hidl_vec activationFunctionDimensions{}; std::vector activationFunctionValue{4}; // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip]. // If set to 0.0 then clipping is disabled. hidl_vec cellClippingThresholdDimensions{}; std::vector cellClippingThresholdValue{10.0f}; // 22: The clipping threshold: for the output from the projection layer, such that values are bound within // [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled. hidl_vec projectionClippingThresholdDimensions{}; std::vector projectionClippingThresholdValue{0.f}; // 23: Time-major if true, batch-major if false. bool timeMajorValue = false; // Normalization: // 24:The input layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at input gate. hidl_vec inputLayerNormWeightsDimensions{0}; std::vector inputLayerNormWeightsValue; // 25:The forget layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at forget gate. hidl_vec forgetLayerNormWeightsDimensions{0}; std::vector forgetLayerNormWeightsValue; // 26:The cell layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at cell gate. hidl_vec cellLayerNormWeightsDimensions{0}; std::vector cellLayerNormWeightsValue; // 27:The output layer normalization weights. A 1-D tensor of shape [num_units]. // Used to rescale normalized inputs to activation at output gate. hidl_vec outputLayerNormWeightsDimensions{0}; std::vector outputLayerNormWeightsValue; // Outputs: // 0: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16. Shape: if time-major: // [max_time, batch_size, output_size] If batch-major: [batch_size, max_time, output_size] hidl_vec outputDimensions{batchSize, timeSize, outputSize}; std::vector outputValue{-0.0129257f, -0.070531f, -0.153508f, -0.0392391f, -0.0300169f, -0.195717f, -0.528679f, -0.0818106f, -0.0332748f, 0.155429f, -0.353966f, -0.0801505f, -0.032312f, -0.0407911f, -0.435053f, -0.0932317f, -0.0108233f, 0.165584f, -0.640424f, -0.0447535f, -0.031675f, 0.125987f, -0.526695f, -0.110093f}; // 1: The hidden state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, output_size]. This output is optional and can be omitted. If this output // is present then output #2 must be present as well. hidl_vec hiddenStateOutDimensions{batchSize, outputSize}; std::vector hiddenStateOutValue(batchSize * outputSize, 0.f); // 2: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32/16, of shape // [batch_size, num_units]. This output is optional and can be omitted. hidl_vec cellStateOutDimensions{batchSize, numUnits}; std::vector cellStateOutValue(batchSize * numUnits, 0.f); UnidirectionalSequenceLstmTestImpl(inputDimensions, inputValue, inputToInputWeightsDimensions, inputToInputWeightsValue, inputToForgetWeightsDimensions, inputToForgetWeightsValue, inputToCellWeightsDimensions, inputToCellWeightsValue, inputToOutputWeightsDimensions, inputToOutputWeightsValue, recurrentToInputWeightsDimensions, recurrentToInputWeightsValue, recurrentToForgetWeightsDimensions, recurrentToForgetWeightsValue, recurrentToCellWeightsDimensions, recurrentToCellWeightsValue, recurrentToOutputWeightsDimensions, recurrentToOutputWeightsValue, cellToInputWeightsDimensions, cellToInputWeightsValue, cellToForgetWeightsDimensions, cellToForgetWeightsValue, cellToOutputWeightsDimensions, cellToOutputWeightsValue, inputGateBiasDimensions, inputGateBiasValue, forgetGateBiasDimensions, forgetGateBiasValue, cellBiasDimensions, cellBiasValue, outputGateBiasDimensions, outputGateBiasValue, projectionWeightsDimensions, projectionWeightsValue, projectionBiasDimensions, projectionBiasValue, outputStateInDimensions, outputStateInValue, cellStateInDimensions, cellStateInValue, activationFunctionDimensions, activationFunctionValue, cellClippingThresholdDimensions, cellClippingThresholdValue, projectionClippingThresholdDimensions, projectionClippingThresholdValue, timeMajorValue, inputLayerNormWeightsDimensions, inputLayerNormWeightsValue, forgetLayerNormWeightsDimensions, forgetLayerNormWeightsValue, cellLayerNormWeightsDimensions, cellLayerNormWeightsValue, outputLayerNormWeightsDimensions, outputLayerNormWeightsValue, outputDimensions, outputValue, hiddenStateOutDimensions, hiddenStateOutValue, cellStateOutDimensions, cellStateOutValue, compute); }