/* * Copyright (c) 2023-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_MATMULKERNELFIXTURE_H #define ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_MATMULKERNELFIXTURE_H #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h" #include "arm_compute/dynamic_fusion/sketch/attributes/MatMulAttributes.h" #include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h" #include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuMatMul.h" #include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h" #include "tests/CL/CLAccessor.h" #include "tests/framework/Fixture.h" #include "tests/framework/Macros.h" #include "tests/validation/Helpers.h" #include "tests/validation/reference/GEMM.h" #include "tests/validation/reference/Permute.h" #include "tests/validation/reference/ReshapeLayer.h" #include "tests/validation/Validation.h" using namespace arm_compute::experimental::dynamic_fusion; namespace arm_compute { namespace test { namespace validation { namespace { template void fill(U &&tensor, int i) { switch (tensor.data_type()) { case DataType::F16: { arm_compute::utils::uniform_real_distribution_16bit distribution{-1.0f, 1.0f}; library->fill(tensor, distribution, i); break; } case DataType::F32: { std::uniform_real_distribution distribution(-1.0f, 1.0f); library->fill(tensor, distribution, i); break; } default: library->fill_tensor_uniform(tensor, i); } } } // namespace template class DynamicFusionGpuMatMulValidationGenericFixture : public framework::Fixture { public: void setup(TensorShape lhs_shape, TensorShape rhs_shape, TensorShape output_shape, bool transpose_a, bool transpose_b, int M0, int N0, int K0, bool export_rhs_to_cl_image, DataType data_type) { //For brevity, the input shapes are assumed to be not-transposed for both a and b matrices. if (transpose_a) { permute(lhs_shape, PermutationVector(1U, 0U)); } if (transpose_b) { permute(rhs_shape, PermutationVector(1U, 0U)); } // Skip configurations unsupported by the device. _device_supports_export_to_cl_image = image2d_from_buffer_supported(CLKernelLibrary::get().get_device()); if (!_device_supports_export_to_cl_image && export_rhs_to_cl_image) { ARM_COMPUTE_TEST_INFO("cl_khr_image2d_from_buffer not supported. TEST skipped"); framework::ARM_COMPUTE_PRINT_INFO(); return; // Note: Also need to skip the validate in corresponding FIXTURE_DATA_TEST_CASEs. } _target = compute_target(lhs_shape, rhs_shape, transpose_a, transpose_b, M0, N0, K0, export_rhs_to_cl_image, data_type); _reference = compute_reference(lhs_shape, rhs_shape, output_shape, transpose_a, transpose_b, data_type); } protected: TensorType compute_target(TensorShape &shape_a, TensorShape &shape_b, bool transpose_a, bool transpose_b, int M0, int N0, int K0, bool export_rhs_to_cl_image, DataType data_type) { ARM_COMPUTE_UNUSED(export_rhs_to_cl_image); CLScheduler::get().default_reinit(); // Create a new workload sketch auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); auto context = GpuWorkloadContext{&cl_compile_ctx}; GpuWorkloadSketch sketch{&context}; // Create sketch tensors ITensorInfo *lhs_info = context.create_tensor_info(TensorInfo(shape_a, 1, data_type)); ITensorInfo *rhs_info = context.create_tensor_info(TensorInfo(shape_b, 1, data_type)); ITensorInfo *dst_info = context.create_tensor_info(); MatMulAttributes matmul_attr{}; matmul_attr.adj_lhs(transpose_a); matmul_attr.adj_rhs(transpose_b); GpuMatMulSettings matmul_settings{}; matmul_settings.m0(M0); matmul_settings.n0(N0); matmul_settings.k0(K0); ITensorInfo *ans_info = FunctionType::create_op(sketch, lhs_info, rhs_info, matmul_attr, matmul_settings); GpuOutput::create_op(sketch, ans_info, dst_info); // Configure runtime ClWorkloadRuntime runtime; runtime.configure(sketch); for (auto &data : runtime.get_auxiliary_tensors()) { CLTensor *tensor = std::get<0>(data); TensorInfo info = std::get<1>(data); AuxMemoryInfo aux_mem_req = std::get<2>(data); tensor->allocator()->init(info, aux_mem_req.alignment); tensor->allocator()->allocate(); // Use ACL allocated memory } // Construct user tensors TensorType t_lhs{}; TensorType t_rhs{}; TensorType t_dst{}; // Initialize user tensors t_lhs.allocator()->init(*lhs_info); t_rhs.allocator()->init(*rhs_info); t_dst.allocator()->init(*dst_info); ARM_COMPUTE_ASSERT(t_lhs.info()->is_resizable()); ARM_COMPUTE_ASSERT(t_rhs.info()->is_resizable()); ARM_COMPUTE_ASSERT(t_dst.info()->is_resizable()); // Allocate and fill user tensors t_lhs.allocator()->allocate(); t_rhs.allocator()->allocate(); t_dst.allocator()->allocate(); ARM_COMPUTE_ASSERT(!t_lhs.info()->is_resizable()); ARM_COMPUTE_ASSERT(!t_rhs.info()->is_resizable()); ARM_COMPUTE_ASSERT(!t_dst.info()->is_resizable()); fill(AccessorType(t_lhs), 0); fill(AccessorType(t_rhs), 1); // Run runtime runtime.run({&t_lhs, &t_rhs, &t_dst}); return t_dst; } SimpleTensor compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, DataType data_type) { // We collapse dimensions > 3 onto dimension 3, i.e. 5D+ tensors will look like 4D // This is necessary unless we choose to extend gemm reference for 5D+ tensors TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ); TensorShape shape_a_collapsed = shape_a.collapsed_from(Window::DimZ); TensorShape shape_b_collapsed = shape_b.collapsed_from(Window::DimZ); // Create reference SimpleTensor a{shape_a_collapsed, data_type, 1}; SimpleTensor b{shape_b_collapsed, data_type, 1}; SimpleTensor c{output_shape_collapsed, data_type, 1}; // Fill reference fill(a, 0); fill(b, 1); /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M), therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K) in order to be able to call reference implementation that works with (B x M x K) input. Similarly, if pretranspose_B is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */ // Define transposed shapes TensorShape a_transposed_shape(a.shape()); a_transposed_shape.set(0, a.shape().y()); a_transposed_shape.set(1, a.shape().x()); TensorShape b_transposed_shape(b.shape()); b_transposed_shape.set(0, b.shape().y()); b_transposed_shape.set(1, b.shape().x()); // Define transposed tensors SimpleTensor a_transposed{a_transposed_shape, data_type}; SimpleTensor b_transposed{b_transposed_shape, data_type}; //pretranspose a if necessary if (pretranspose_a) { a_transposed = reference::permute(a, PermutationVector(1U, 0U)); } // pretranspose b if necessary if (pretranspose_b) { b_transposed = reference::permute(b, PermutationVector(1U, 0U)); } // Use transposed tensors if boolean enabled else use original tensors SimpleTensor result = reference::gemm((pretranspose_a) ? a_transposed : a, (pretranspose_b) ? b_transposed : b, c, 1.0f, 0.f); // We reshape the gemm output back if the tensor is high dimensional if (output_shape_collapsed != output_shape) { // std::cout << "called reshape: \n"; result = reference::reshape_layer(result, output_shape); } return result; } CLTensor _target{}; SimpleTensor _reference{}; bool _device_supports_export_to_cl_image{false}; bool _device_supports_mmul{false}; }; template class DynamicFusionGpuMatMulValidationFixture : public DynamicFusionGpuMatMulValidationGenericFixture { public: void setup(TensorShape lhs_shape, TensorShape rhs_shape, TensorShape output_shape, bool transpose_a, bool transpose_b, int M0, int N0, int K0, bool export_rhs_to_cl_image, DataType data_type) { ARM_COMPUTE_UNUSED(export_rhs_to_cl_image); DynamicFusionGpuMatMulValidationGenericFixture::setup( lhs_shape, rhs_shape, output_shape, transpose_a, transpose_b, M0, N0, K0, false /* export_rhs_to_cl_image bias */, data_type); } }; } // namespace validation } // namespace test } // namespace arm_compute #endif // ACL_TESTS_VALIDATION_FIXTURES_DYNAMIC_FUSION_GPU_CL_MATMULKERNELFIXTURE_H