/* * Copyright (c) 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H #define ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "src/core/utils/quantization/AsymmHelpers.h" #include "tests/framework/Asserts.h" // Required for ARM_COMPUTE_ASSERT #include "tests/framework/Fixture.h" #include "tests/validation/Validation.h" #include "tests/validation/reference/ActivationLayer.h" #include "tests/validation/reference/GEMM.h" #include "tests/validation/reference/GEMMLowp.h" #include "tests/validation/reference/Permute.h" #include "tests/validation/reference/ReshapeLayer.h" #include #include #include namespace arm_compute { namespace test { namespace validation { template class MatMulGenericValidationFixture : public framework::Fixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs, Settings settings, QuantizationInfo a_qinfo = QuantizationInfo(), QuantizationInfo b_qinfo = QuantizationInfo(), QuantizationInfo o_qinfo = QuantizationInfo()) { // For brevity, the input shapes are assumed to be not-transposed for both a and b matrices. if(transpose_a) { permute(shape_a, PermutationVector(1U, 0U)); } if(transpose_b) { permute(shape_b, PermutationVector(1U, 0U)); } _target = compute_target(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, settings, a_qinfo, b_qinfo, o_qinfo); _reference = compute_reference(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, a_qinfo, b_qinfo, o_qinfo); } protected: template void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f) { switch(tensor.data_type()) { case DataType::F16: { arm_compute::utils::uniform_real_distribution_16bit distribution{ float(lo), float(hi) }; library->fill(tensor, distribution, i); break; } case DataType::F32: { std::uniform_real_distribution distribution(lo, hi); library->fill(tensor, distribution, i); break; } case DataType::QASYMM8: case DataType::QASYMM8_SIGNED: { library->fill_tensor_uniform(tensor, i); break; } default: { ARM_COMPUTE_ERROR("Unsupported data type."); } } } TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs, const Settings &settings, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { // 1. Create Classes and configure function // ---------------------------------------------------- // Create tensors // Configure relevant classes and matmul function TensorType a = create_tensor(shape_a, data_type, 1, a_qinfo); TensorType b = create_tensor(shape_b, data_type, 1, b_qinfo); TensorType dst = create_tensor(output_shape, data_type, 1, o_qinfo); FunctionType matmul; // Configure MatMulInfo class MatMulInfo mm_info; mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b); // Ensure values are dynamic a.info()->set_are_values_constant(false); b.info()->set_are_values_constant(false); // Configure operator matmul.configure(&a, &b, &dst, mm_info, settings, act_info); // Assertions ARM_COMPUTE_ASSERT(a.info()->is_resizable()); ARM_COMPUTE_ASSERT(b.info()->is_resizable()); ARM_COMPUTE_ASSERT(dst.info()->is_resizable()); // Allocate tensors a.allocator()->allocate(); b.allocator()->allocate(); dst.allocator()->allocate(); ARM_COMPUTE_ASSERT(!a.info()->is_resizable()); ARM_COMPUTE_ASSERT(!b.info()->is_resizable()); ARM_COMPUTE_ASSERT(!dst.info()->is_resizable()); // For multiple runs. for(int i = 0; i < num_extra_runs; i++) { // Stress dynamic tensors by running multiple times. // -------------------------------------------------------- // Fill tensors with new seed // Run function const int seed_offset = num_extra_runs * 100; fill(AccessorType(a), seed_offset); fill(AccessorType(b), seed_offset + 1); matmul.run(); } // 2. Final Run for reference comparison // -------------------------------------------------------- // Re-fill tensors same seed as reference run // Compute MatMul operation fill(AccessorType(a), 2); fill(AccessorType(b), 3); matmul.run(); return dst; } template typename std::enable_if < !std::is_integral::value, SimpleTensor>::type compute_reference_gemm(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta, const QuantizationInfo &o_qinfo) { ARM_COMPUTE_UNUSED(o_qinfo); return reference::gemm(a, b, c, alpha, beta); } template typename std::enable_if::value, SimpleTensor>::type compute_reference_gemm(const SimpleTensor &a, const SimpleTensor &b, const SimpleTensor &c, float alpha, float beta, const QuantizationInfo &o_qinfo) { ARM_COMPUTE_UNUSED(alpha, beta); const auto aq = a.quantization_info().uniform(); const auto bq = b.quantization_info().uniform(); const auto oq = o_qinfo.uniform(); const auto multiplier = aq.scale * bq.scale / oq.scale; int32_t output_multiplier = 0; int32_t output_shift = 0; quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift); std::vector output_multipliers{ output_multiplier }; std::vector output_shifts{ output_shift }; //The lhs and rhs offsets are negated here to keep the reference aligned with the function implementation where the lhs and rhs offsets are also negated. const auto tmp = reference::gemmlowp_matrix_multiply_core( a, b, c.shape(), -aq.offset, -bq.offset); auto output = reference::gemmlowp_quantize_down_scale_by_fixedpoint( tmp, output_multipliers, output_shifts, oq.offset, std::numeric_limits::lowest(), std::numeric_limits::max()); output.quantization_info(o_qinfo); return output; } SimpleTensor compute_reference(const TensorShape &a_shape, const TensorShape &b_shape, const TensorShape &output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { // We collapse dimensions > 2 onto dimension 2, i.e. 4D+ tensors will look like 3D // This is necessary unless we choose to extend gemm reference for 4D+ tensors TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ); TensorShape a_shape_collapsed = a_shape.collapsed_from(Window::DimZ); TensorShape b_shape_collapsed = b_shape.collapsed_from(Window::DimZ); // Create reference SimpleTensor a{ a_shape_collapsed, data_type, 1, a_qinfo }; SimpleTensor b{ b_shape_collapsed, data_type, 1, b_qinfo }; SimpleTensor c{ output_shape_collapsed, data_type, 1 }; // Fill reference fill(a, 2); fill(b, 3); /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if transpose_a is set to true, then A is assumed to be (B x K x M), therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K) in order to be able to call reference implementation that works with (B x M x K) input. Similarly, if transpose_b is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */ // Define transposed shapes TensorShape a_transposed_shape(a.shape()); a_transposed_shape.set(0, a.shape().y()); a_transposed_shape.set(1, a.shape().x()); TensorShape b_transposed_shape(b.shape()); b_transposed_shape.set(0, b.shape().y()); b_transposed_shape.set(1, b.shape().x()); // Define transposed tensors SimpleTensor a_transposed{ a_transposed_shape, data_type }; SimpleTensor b_transposed{ b_transposed_shape, data_type }; // pretranspose a if necessary if(transpose_a) { a_transposed = reference::permute(a, PermutationVector(1U, 0U)); } // pretranspose b if necessary if(transpose_b) { b_transposed = reference::permute(b, PermutationVector(1U, 0U)); } // Setting beta to 0 will effectively disable C for the // computation of the reference: alpha * A * B + 0 * C // Use transposed tensors if boolean enabled else use original tensors auto result = compute_reference_gemm((transpose_a) ? a_transposed : a, (transpose_b) ? b_transposed : b, c, 1.0f, 0.f, o_qinfo); result = reference::activation_layer(result, act_info, o_qinfo); // We reshape the gemm output back if the tensor is high dimensional if(output_shape_collapsed != output_shape) { result = reference::reshape_layer(result, output_shape); } return result; } TensorType _target{}; SimpleTensor _reference{}; }; template class MatMulValidationFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type) { MatMulGenericValidationFixture::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, ActivationLayerInfo(), 0, Settings()); } }; template class MatMulValidationWithDynamicTensorsFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs) { MatMulGenericValidationFixture::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings()); } }; template class QuantizedMatMulValidationFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info, int num_extra_runs, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { MatMulGenericValidationFixture::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(), a_qinfo, b_qinfo, o_qinfo); } }; template class MatMulValidationWithActivationFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo act_info) { MatMulGenericValidationFixture::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings()); } }; template class MatMulValidationWithActivationAlphaBetaFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo::ActivationFunction function, float alpha_beta) { ActivationLayerInfo act_info(function, alpha_beta, alpha_beta); MatMulGenericValidationFixture::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings()); } }; template class QuantizedMatMulValidationWithActivationFixture : public MatMulGenericValidationFixture { public: void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool transpose_a, bool transpose_b, DataType data_type, ActivationLayerInfo::ActivationFunction function, float alpha_beta, int num_extra_runs, QuantizationInfo a_qinfo, QuantizationInfo b_qinfo, QuantizationInfo o_qinfo) { ActivationLayerInfo act_info(function, alpha_beta, alpha_beta); MatMulGenericValidationFixture::setup(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(), a_qinfo, b_qinfo, o_qinfo); } }; } // namespace validation } // namespace test } // namespace arm_compute #endif // ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H