/* * Copyright (c) 2021-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/softmax/generic/neon/impl.h" #include "support/SaturateCast.h" namespace arm_compute { namespace cpu { template void neon_softmax_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window) { ARM_COMPUTE_UNUSED(axis); static_assert(std::is_same::value || std::is_same::value, "quantized type should be either qasymm8_t or qasymm8_signed_t."); const int input_width = in->info()->valid_region().shape.x(); const float scale_beta = -beta * in->info()->quantization_info().uniform().scale; const float32x4_t scale_beta_vec = vdupq_n_f32(scale_beta); Iterator in_it(in, window); Iterator out_it(out, window); constexpr int vec_size = 16; #ifndef __aarch64__ const int sum_stages = log2(vec_size >> 1); #endif // __aarch64__ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; execute_window_loop( window, [&](const Coordinates &) { /* Get pointers */ const T *in_ptr = reinterpret_cast(in_it.ptr()); T *out_ptr = reinterpret_cast(out_it.ptr()); float *tmp_ptr = reinterpret_cast(tmp); T max_val; /* Compute Max */ { // Init max value auto vec_max = wrapper::vdup_n(support::cpp11::lowest(), ExactTagType{}); int x = 0; for (; x <= (input_width - vec_size); x += vec_size) { const auto current_value = wrapper::vloadq(in_ptr + x); vec_max = wrapper::vmax(vec_max, current_value); } #ifdef __aarch64__ max_val = wrapper::vmaxv(vec_max); #else // __aarch64__ auto carry_max = wrapper::vpmax(wrapper::vgethigh(vec_max), wrapper::vgetlow(vec_max)); for (int i = 0; i < sum_stages; ++i) { carry_max = wrapper::vpmax(carry_max, carry_max); } max_val = wrapper::vgetlane(carry_max, 0); #endif // __aarch64__ // Compute left-over elements for (; x < input_width; ++x) { max_val = std::max(*(in_ptr + x), max_val); } } // Compute Max float sum_transformed{}; /* Compute exponentials and sum */ { /* Get max value */ const auto vec_max = wrapper::vdup_n(max_val, wrapper::traits::vector_128_tag{}); /* Init sum to zero */ float32x4x4_t vec_sum = { vdupq_n_f32(0.f), vdupq_n_f32(0.f), vdupq_n_f32(0.f), vdupq_n_f32(0.f), }; /* Loop over row and compute exponentials and sum */ int x = 0; for (; x <= (input_width - vec_size); x += vec_size) { auto vec_elements = wrapper::vloadq(in_ptr + x); vec_elements = wrapper::vqsub(vec_max, vec_elements); float32x4x4_t vec_elements_flt = convert_int_to_float(vec_elements); if (IS_LOG) { vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec); vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec); vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec); vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0])); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1])); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2])); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3])); } else { vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec)); vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec)); vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec)); vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec)); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]); } vst4q_f32(tmp_ptr + x, vec_elements_flt); } /* Reduce sum */ const float32x4_t sum_16_byte = vaddq_f32(vaddq_f32(vec_sum.val[0], vec_sum.val[1]), vaddq_f32(vec_sum.val[2], vec_sum.val[3])); float sum; #ifdef __aarch64__ sum = wrapper::vaddv(sum_16_byte); #else // __aarch64__ auto sum_res = vpadd_f32(vget_high_f32(sum_16_byte), vget_low_f32(sum_16_byte)); sum_res = vpadd_f32(sum_res, sum_res); sum = wrapper::vgetlane(sum_res, 0); #endif // __aarch64__ /* Run remaining elements */ for (; x < input_width; ++x) { float element{}; if (IS_LOG) { element = (max_val - in_ptr[x]) * scale_beta; sum += std::exp(element); } else { element = std::exp((max_val - in_ptr[x]) * scale_beta); sum += element; } tmp_ptr[x] = element; } if (!IS_LOG) { sum_transformed = 256.f / sum; } else { sum_transformed = std::log(sum); } } // Compute exponentials and sum /* Normalize exponentials */ { constexpr bool is_qasymm8_signed = std::is_same::value; const float32x4_t sum_vec = vdupq_n_f32(sum_transformed); /* Loop over row and compute softmax */ int x = 0; for (; x <= (input_width - vec_size); x += vec_size) { using int_vec_type = wrapper::traits::neon_vector_t; float32x4x4_t vec_in = vld4q_f32(tmp_ptr + x); int_vec_type normalized_value{}; if (IS_LOG) { const float32x4x4_t sub = { vsubq_f32(vec_in.val[0], sum_vec), vsubq_f32(vec_in.val[1], sum_vec), vsubq_f32(vec_in.val[2], sum_vec), vsubq_f32(vec_in.val[3], sum_vec), }; normalized_value = convert_float_to_int(sub); } else { float32x4x4_t mul = { vmulq_f32(vec_in.val[0], sum_vec), vmulq_f32(vec_in.val[1], sum_vec), vmulq_f32(vec_in.val[2], sum_vec), vmulq_f32(vec_in.val[3], sum_vec), }; if (is_qasymm8_signed) { const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{}); mul.val[0] = wrapper::vsub(mul.val[0], offset_vec); mul.val[1] = wrapper::vsub(mul.val[1], offset_vec); mul.val[2] = wrapper::vsub(mul.val[2], offset_vec); mul.val[3] = wrapper::vsub(mul.val[3], offset_vec); } normalized_value = convert_float_to_int(mul); } wrapper::vstore(out_ptr + x, normalized_value); } /* Run remaining elements */ for (; x < input_width; ++x) { if (IS_LOG) { out_ptr[x] = utils::cast::saturate_cast(tmp_ptr[x] - sum_transformed); } else { out_ptr[x] = utils::cast::saturate_cast((tmp_ptr[x] * sum_transformed) - (is_qasymm8_signed ? 128.f : 0)); } } } // Normalize exponentials }, in_it, out_it); } template void neon_softmax_non_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window) { static_assert(std::is_same::value || std::is_same::value, "quantized type should be either qasymm8_t or qasymm8_signed_t."); const float scale_beta = -beta * in->info()->quantization_info().uniform().scale; const float32x4_t scale_beta_vec = vdupq_n_f32(scale_beta); Iterator in_it(in, window); Iterator out_it(out, window); /** SIMD vector tag type. */ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; constexpr int vec_size = 16; const ITensorInfo *in_info = in->info(); const ITensorInfo *out_info = out->info(); const int x_width = in_info->valid_region().shape.x(); const int in_axis_stride = in_info->strides_in_bytes()[axis]; const int out_axis_stride = out_info->strides_in_bytes()[axis]; const int tmp_axis_stride = in_axis_stride; const int axis_width = in_info->dimension(axis); const int end_actual = std::min(window[0].end(), x_width); execute_window_loop( window, [&](const Coordinates &winCoords) { const bool vector_exceeds_bounds = ((winCoords[0] + vec_size) > end_actual); int num_remaining = (end_actual - winCoords[0]); int num_remaining_full = num_remaining / 4; int num_remaining_partial = num_remaining % 4; /* Get pointers */ const uint8_t *in_ptr = in_it.ptr(); uint8_t *out_ptr = out_it.ptr(); uint8_t *tmp_ptr = reinterpret_cast(tmp); auto vec_max = wrapper::vdup_n(support::cpp11::lowest(), ExactTagType{}); /* Compute Max */ { if (!vector_exceeds_bounds) { int i = 0; for (; i < axis_width; ++i) { const auto current_value = wrapper::vloadq((i * in_axis_stride) + reinterpret_cast(in_ptr)); vec_max = wrapper::vmax(vec_max, current_value); } } else { int i = 0; for (; i < axis_width; ++i) { const T *const base_ptr_in = ((i * in_axis_stride) + reinterpret_cast(in_ptr)); int j = 0; for (; j < num_remaining; ++j) { const T current_value = *(base_ptr_in + j); vec_max[j] = std::max(vec_max[j], current_value); } } } } // Compute Max float32x4x4_t vec_sum_transformed = { vdupq_n_f32(0.f), vdupq_n_f32(0.f), vdupq_n_f32(0.f), vdupq_n_f32(0.f), }; /* Compute exponentials and sum */ { /* Init sum to zero */ float32x4x4_t vec_sum = vec_sum_transformed; auto vec_elements = wrapper::vdup_n(static_cast(0), ExactTagType{}); float32x4x4_t vec_elements_flt; if (!vector_exceeds_bounds) { int i = 0; for (; i < axis_width; ++i) { vec_elements = wrapper::vloadq((i * in_axis_stride) + reinterpret_cast(in_ptr)); vec_elements = wrapper::vqsub(vec_max, vec_elements); vec_elements_flt = convert_int_to_float(vec_elements); if (IS_LOG) { vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec); vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec); vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec); vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0])); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1])); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2])); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3])); } else { vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec)); vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec)); vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec)); vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec)); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]); } vst4q_f32((i * tmp_axis_stride) + reinterpret_cast(tmp_ptr), vec_elements_flt); } auto vec_256 = wrapper::vdup_n(static_cast(256.f), ExactTagType{}); if (!IS_LOG) { vec_sum_transformed.val[0] = wrapper::vdiv(vec_256, vec_sum.val[0]); vec_sum_transformed.val[1] = wrapper::vdiv(vec_256, vec_sum.val[1]); vec_sum_transformed.val[2] = wrapper::vdiv(vec_256, vec_sum.val[2]); vec_sum_transformed.val[3] = wrapper::vdiv(vec_256, vec_sum.val[3]); } else { vec_sum_transformed.val[0] = wrapper::vlog(vec_sum.val[0]); vec_sum_transformed.val[1] = wrapper::vlog(vec_sum.val[1]); vec_sum_transformed.val[2] = wrapper::vlog(vec_sum.val[2]); vec_sum_transformed.val[3] = wrapper::vlog(vec_sum.val[3]); } } else { int i = 0; for (; i < axis_width; ++i) { const T *const base_ptr_in = (i * in_axis_stride) + reinterpret_cast(in_ptr); auto vec_elements = wrapper::vdup_n(static_cast(0), ExactTagType{}); //vec_els is functionally redundant but is needed as a workaround for a toolchain bug. std::vector vec_els(16); for (int k = 0; k < num_remaining_full; ++k) { for (int j = 0; j < 4; ++j) { vec_els[k * 4 + j] = *(base_ptr_in + (4 * k + j)); } } for (int j = 0; j < num_remaining_partial; ++j) { vec_els[num_remaining_full * 4 + j] = *(base_ptr_in + (4 * num_remaining_full + j)); } for (int q = 0; q < 16; q++) { vec_elements[q] = vec_els[q]; } vec_elements = wrapper::vqsub(vec_max, vec_elements); float32x4x4_t vec_elements_flt = convert_int_to_float(vec_elements); if (IS_LOG) { vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec); vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec); vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec); vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0])); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1])); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2])); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3])); } else { vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec)); vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec)); vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec)); vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec)); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]); } float *const base_ptr_tmp = (i * tmp_axis_stride) + reinterpret_cast(tmp_ptr); for (int k = 0; k < num_remaining_full; ++k) { for (int j = 0; j < 4; ++j) { *(base_ptr_tmp + (4 * k + j)) = vec_elements_flt.val[k][j]; } } for (int j = 0; j < num_remaining_partial; ++j) { *(base_ptr_tmp + (4 * num_remaining_full + j)) = vec_elements_flt.val[num_remaining_full][j]; } } auto vec_256 = wrapper::vdup_n(static_cast(256), ExactTagType{}); if (!IS_LOG) { vec_sum_transformed.val[0] = wrapper::vdiv(vec_256, vec_sum.val[0]); vec_sum_transformed.val[1] = wrapper::vdiv(vec_256, vec_sum.val[1]); vec_sum_transformed.val[2] = wrapper::vdiv(vec_256, vec_sum.val[2]); vec_sum_transformed.val[3] = wrapper::vdiv(vec_256, vec_sum.val[3]); } else { vec_sum_transformed.val[0] = wrapper::vlog(vec_sum.val[0]); vec_sum_transformed.val[1] = wrapper::vlog(vec_sum.val[1]); vec_sum_transformed.val[2] = wrapper::vlog(vec_sum.val[2]); vec_sum_transformed.val[3] = wrapper::vlog(vec_sum.val[3]); } } } // Compute exponentials and sum /* Normalize exponentials */ { constexpr bool is_qasymm8_signed = std::is_same::value; if (!vector_exceeds_bounds) { int i = 0; for (; i < axis_width; ++i) { using int_vec_type = wrapper::traits::neon_vector_t; float32x4x4_t vec_in = vld4q_f32((i * tmp_axis_stride) + reinterpret_cast(tmp_ptr)); int_vec_type normalized_value{}; if (IS_LOG) { const float32x4x4_t sub = { vsubq_f32(vec_in.val[0], vec_sum_transformed.val[0]), vsubq_f32(vec_in.val[1], vec_sum_transformed.val[1]), vsubq_f32(vec_in.val[2], vec_sum_transformed.val[2]), vsubq_f32(vec_in.val[3], vec_sum_transformed.val[3]), }; normalized_value = convert_float_to_int(sub); } else { float32x4x4_t mul = { vmulq_f32(vec_in.val[0], vec_sum_transformed.val[0]), vmulq_f32(vec_in.val[1], vec_sum_transformed.val[1]), vmulq_f32(vec_in.val[2], vec_sum_transformed.val[2]), vmulq_f32(vec_in.val[3], vec_sum_transformed.val[3]), }; if (is_qasymm8_signed) { const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{}); mul.val[0] = wrapper::vsub(mul.val[0], offset_vec); mul.val[1] = wrapper::vsub(mul.val[1], offset_vec); mul.val[2] = wrapper::vsub(mul.val[2], offset_vec); mul.val[3] = wrapper::vsub(mul.val[3], offset_vec); } normalized_value = convert_float_to_int(mul); } wrapper::vstore((i * out_axis_stride) + reinterpret_cast(out_ptr), normalized_value); } } else { int i = 0; for (; i < axis_width; ++i) { T *const base_ptr_out = (i * out_axis_stride) + reinterpret_cast(out_ptr); float *const base_ptr_tmp = (i * tmp_axis_stride) + reinterpret_cast(tmp_ptr); if (IS_LOG) { for (int k = 0; k < num_remaining_full; ++k) { for (int j = 0; j < 4; ++j) { *(base_ptr_out + (4 * k + j)) = utils::cast::saturate_cast( (*(base_ptr_tmp + (4 * k + j)) - vec_sum_transformed.val[k][j])); } } for (int j = 0; j < num_remaining_partial; ++j) { *(base_ptr_out + (4 * num_remaining_full + j)) = utils::cast::saturate_cast(*(base_ptr_tmp + (4 * num_remaining_full + j)) - vec_sum_transformed.val[num_remaining_full][j]); } } else { for (int k = 0; k < num_remaining_full; ++k) { for (int j = 0; j < 4; ++j) { *(base_ptr_out + (4 * k + j)) = utils::cast::saturate_cast( *(base_ptr_tmp + (4 * k + j)) * vec_sum_transformed.val[k][j] - (is_qasymm8_signed ? 128.f : 0)); } } for (int j = 0; j < num_remaining_partial; ++j) { *(base_ptr_out + (4 * num_remaining_full + j)) = utils::cast::saturate_cast(*(base_ptr_tmp + (4 * num_remaining_full + j)) * vec_sum_transformed.val[num_remaining_full][j] - (is_qasymm8_signed ? 128.f : 0)); } } } } } // Normalize exponentials }, in_it, out_it); } template void neon_softmax_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window); template void neon_softmax_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window); template void neon_softmax_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window); template void neon_softmax_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window); template void neon_softmax_non_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window); template void neon_softmax_non_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window); template void neon_softmax_non_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window); template void neon_softmax_non_x_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window); } // namespace cpu } // namespace arm_compute