/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_NEON_KERNELS_ELEMENTWISE_IMPL_H #define SRC_CORE_NEON_KERNELS_ELEMENTWISE_IMPL_H #include "src/core/NEON/NEAsymm.h" namespace arm_compute { namespace cpu { template typename VectorType::type elementwise_arithm_op(const typename VectorType::type &a, const typename VectorType::type &b) { using vec_type = typename VectorType::type; using scalar_type = typename VectorType::scalar_type; using tag_type = typename VectorType::tag_type; vec_type res = wrapper::vdup_n(static_cast(0), tag_type{}); switch (op) { case ArithmeticOperation::MAX: res = wrapper::vmax(a, b); break; case ArithmeticOperation::MIN: res = wrapper::vmin(a, b); break; case ArithmeticOperation::SQUARED_DIFF: { const vec_type tmp = wrapper::vsub(a, b); res = wrapper::vmul(tmp, tmp); break; } case ArithmeticOperation::PRELU: { const vec_type zero = wrapper::vdup_n(static_cast(0), tag_type{}); const vec_type tmp = wrapper::vmul(a, b); const auto gt = wrapper::vcgt(a, zero); res = wrapper::vbsl(gt, a, tmp); break; } default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template typename VectorType::type elementwise_arithm_op_broadcast(const typename VectorType::type &a, const ScalarType &broadcast_value, const bool reorder) { using tag_type = typename VectorType::tag_type; using vec_type = typename VectorType::type; vec_type broadcast_vector = wrapper::vdup_n(broadcast_value, tag_type{}); return elementwise_arithm_op(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector); } template void elementwise_op( const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &), int (*broadcast_func)( int, int, int, const InputScalarType *, const InputScalarType &, OutputScalarType *, const bool), int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *, OutputScalarType *)) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = std::min(16 / static_cast(sizeof(OutputScalarType)), 8); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); if (is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const InputScalarType broadcast_value = *reinterpret_cast(broadcast_input.ptr()); int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_value, output_ptr, !is_broadcast_input_2); for (; x < window_end_x; ++x) { const auto a = *(non_broadcast_input_ptr + x); *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a, !is_broadcast_input_2 ? a : broadcast_value); } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr); for (; x < window_end_x; ++x) { const auto a = *(input1_ptr + x); const auto b = *(input2_ptr + x); *(output_ptr + x) = (*scalar_func)(a, b); } }, input1, input2, output); } } template inline ScalarType elementwise_arithm_op_scalar(const ScalarType &a, const ScalarType &b) { auto res = ScalarType(0); switch (op) { case ArithmeticOperation::MAX: res = std::max(a, b); break; case ArithmeticOperation::MIN: res = std::min(a, b); break; case ArithmeticOperation::SQUARED_DIFF: { res = (a - b) * (a - b); break; } case ArithmeticOperation::PRELU: { res = (a > 0 ? a : a * b); break; } case ArithmeticOperation::DIV: { res = a / b; if (std::is_integral::value) { res = (b == 0) ? 0 : res; if (static_cast(a) % static_cast(b) != 0 && ((a < 0) != (b < 0))) { --res; } } break; } case ArithmeticOperation::POWER: { res = std::pow(a, b); break; } default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template <> inline int32x4_t elementwise_arithm_op>(const int32x4_t &a, const int32x4_t &b) { return vcvtq_s32_f32(vfloorq_f32(wrapper::vdiv(vcvtq_f32_s32(a), vcvtq_f32_s32(b)))); } template <> inline float32x4_t elementwise_arithm_op>(const float32x4_t &a, const float32x4_t &b) { return wrapper::vdiv(a, b); } template <> inline float32x4_t elementwise_arithm_op>(const float32x4_t &a, const float32x4_t &b) { return wrapper::vpow(a, b); } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template <> inline float16x8_t elementwise_arithm_op>( const float16x8_t &a, const float16x8_t &b) { return wrapper::vdiv(a, b); } template <> inline float16x8_t elementwise_arithm_op>( const float16x8_t &a, const float16x8_t &b) { return wrapper::vpow(a, b); } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template inline int elementwise_arithm_op_loop(int window_start_x, int window_end_x, int window_step_x, const ScalarType *input1_ptr, const ScalarType *input2_ptr, ScalarType *output_ptr) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq(input1_ptr + x); const auto b = wrapper::vloadq(input2_ptr + x); wrapper::vstore(output_ptr + x, elementwise_arithm_op(a, b)); } return x; } template inline int elementwise_arithm_op_broadcast_loop(int window_start_x, int window_end_x, int window_step_x, const ScalarType *non_broadcast_input_ptr, const ScalarType &broadcast_value, ScalarType *output_ptr, const bool reorder) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq((non_broadcast_input_ptr + x)); wrapper::vstore(output_ptr + x, elementwise_arithm_op_broadcast(a, broadcast_value, reorder)); } return x; } template void elementwise_arithm_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { using scalar_type = typename VectorType::scalar_type; elementwise_op( in1, in2, out, window, &elementwise_arithm_op_scalar, &elementwise_arithm_op_broadcast_loop, &elementwise_arithm_op_loop); } template inline uint8_t elementwise_comp_op_scalar(const InputScalarType &a, const InputScalarType &b) { bool res = false; switch (op) { case ComparisonOperation::Equal: res = (a == b); break; case ComparisonOperation::NotEqual: res = (a != b); break; case ComparisonOperation::Greater: res = (a > b); break; case ComparisonOperation::GreaterEqual: res = (a >= b); break; case ComparisonOperation::Less: res = (a < b); break; case ComparisonOperation::LessEqual: res = (a <= b); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res ? ~static_cast(0) : static_cast(0); } template inline OutputVectorType elementwise_comp_op(const InputVectorType &a, const InputVectorType &b) { OutputVectorType res = {0, 0, 0, 0}; switch (op) { case ComparisonOperation::Equal: res = wrapper::vceq(a, b); break; case ComparisonOperation::NotEqual: res = wrapper::vnot(wrapper::vceq(a, b)); break; case ComparisonOperation::Greater: res = wrapper::vcgt(a, b); break; case ComparisonOperation::GreaterEqual: res = wrapper::vcge(a, b); break; case ComparisonOperation::Less: res = wrapper::vcgt(b, a); break; case ComparisonOperation::LessEqual: res = wrapper::vcge(b, a); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template inline OutputVectorType elementwise_comp_op_broadcast(const InputVectorType &a, const InputScalarType &broadcast_value, const bool reorder) { InputVectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag()); return elementwise_comp_op(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector); } template inline int elementwise_comp_op_broadcast_8_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = elementwise_comp_op_broadcast( wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder); wrapper::vstore(output_ptr + x, a); } return x; } template inline int elementwise_comp_op_broadcast_16_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = elementwise_comp_op_broadcast( wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder); wrapper::vstore(output_ptr + x, wrapper::vmovn(a)); } return x; } template inline int elementwise_comp_op_broadcast_32_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = elementwise_comp_op_broadcast( wrapper::vloadq(non_broadcast_input_ptr + x), broadcast_value, reorder); const auto b = elementwise_comp_op_broadcast( wrapper::vloadq(non_broadcast_input_ptr + x + 4), broadcast_value, reorder); wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(a), wrapper::vmovn(b)))); } if (x <= window_end_x - 4) { const auto a = elementwise_comp_op_broadcast( wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder); for (int i = 0; i < 4; i++) { *(output_ptr + x + i) = wrapper::vgetlane(a, i); } x = +4; } return x; } template inline int elementwise_comp_op_8_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq(input1_ptr + x); const auto b = wrapper::vloadq(input2_ptr + x); const auto res = elementwise_comp_op(a, b); wrapper::vstore(output_ptr + x, res); } return x; } template inline int elementwise_comp_op_16_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq(input1_ptr + x); const auto b = wrapper::vloadq(input2_ptr + x); const auto res = elementwise_comp_op(a, b); wrapper::vstore(output_ptr + x, wrapper::vmovn(res)); } return x; } template inline int elementwise_comp_op_32_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { auto a = wrapper::vloadq(input1_ptr + x); auto b = wrapper::vloadq(input2_ptr + x); const auto res = elementwise_comp_op(a, b); a = wrapper::vloadq(input1_ptr + x + 4); b = wrapper::vloadq(input2_ptr + x + 4); const auto res2 = elementwise_comp_op(a, b); wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(res), wrapper::vmovn(res2)))); } if (x <= window_end_x - 4) { const auto a = wrapper::vloadq(input1_ptr + x); const auto b = wrapper::vloadq(input2_ptr + x); const auto res = elementwise_comp_op(a, b); for (int i = 0; i < 4; i++) { *(output_ptr + x + i) = wrapper::vgetlane(res, i); } x = +4; } return x; } template void elementwise_comp_op_8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op( in1, in2, out, window, &elementwise_comp_op_scalar, &elementwise_comp_op_broadcast_8_loop, &elementwise_comp_op_8_loop); } template void elementwise_comp_op_16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op( in1, in2, out, window, &elementwise_comp_op_scalar, &elementwise_comp_op_broadcast_16_loop, &elementwise_comp_op_16_loop); } template void elementwise_comp_op_32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op( in1, in2, out, window, &elementwise_comp_op_scalar, &elementwise_comp_op_broadcast_32_loop, &elementwise_comp_op_32_loop); } inline float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale) { qasymm8x16_t x = vld1q_u8(input1_ptr); const float32x4x4_t out = {{ vmulq_f32( vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale), vmulq_f32( vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale), vmulq_f32( vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale), vmulq_f32(vcvtq_f32_s32( vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale), }}; return out; } inline float32x4x4_t load_quantized_signed(const int8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale) { qasymm8x16_signed_t x = vld1q_s8(input1_ptr); const float32x4x4_t out = {{ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale), }}; return out; } inline void store_quantized(uint8_t *output_ptr, const uint32x4x4_t &out) { const uint8x8_t pa = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[0]), vqmovn_u32(out.val[1]))); const uint8x8_t pb = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[2]), vqmovn_u32(out.val[3]))); vst1q_u8(output_ptr, vcombine_u8(pa, pb)); } inline void store_quantized(uint8_t *output_ptr, const int32x4x4_t &out) { const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1]))); const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3]))); vst1q_u8(output_ptr, vcombine_u8(pa, pb)); } inline void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale) { int32x4x4_t out = {{ vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)), }}; store_quantized(output_ptr, out); } inline void store_quantized_signed(int8_t *output_ptr, const int32x4x4_t &out) { const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1]))); const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3]))); vst1q_s8(output_ptr, vcombine_s8(pa, pb)); } inline void store_quantized_signed(int8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale) { int32x4x4_t out = {{ vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)), }}; store_quantized_signed(output_ptr, out); } template inline uint8_t elementwise_arithm_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo) { return quantize_qasymm8(elementwise_arithm_op_scalar(a, b), qinfo); } template inline int8_t elementwise_arithm_op_quantized_signed_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo) { return quantize_qasymm8_signed(elementwise_arithm_op_scalar(a, b), qinfo); } template float32x4x4_t elementwise_arithm_op(const float32x4x4_t &a, const float32x4x4_t &b) { using neon_vector_float = wrapper::traits::neon_vector; float32x4x4_t out = {{ elementwise_arithm_op(a.val[0], b.val[0]), elementwise_arithm_op(a.val[1], b.val[1]), elementwise_arithm_op(a.val[2], b.val[2]), elementwise_arithm_op(a.val[3], b.val[3]), }}; return out; } template inline uint8_t elementwise_comp_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo) { ARM_COMPUTE_UNUSED(qinfo); return elementwise_comp_op_scalar(a, b); } template inline uint32x4x4_t elementwise_comp_op(const float32x4x4_t &a, const float32x4x4_t &b) { uint32x4x4_t out = {{elementwise_comp_op(a.val[0], b.val[0]), elementwise_comp_op(a.val[1], b.val[1]), elementwise_comp_op(a.val[2], b.val[2]), elementwise_comp_op(a.val[3], b.val[3])}}; return out; } template inline int elementwise_arithm_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x, const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr, int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2, float32x4_t voffseto, float32x4_t invvscaleo) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { // Get inputs and compute output const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1); const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2); const float32x4x4_t rf = elementwise_arithm_op(af, bf); store_quantized(output_ptr + x, rf, voffseto, invvscaleo); } return x; } template inline int elementwise_arithm_op_quantized_singed_loop(int window_start_x, int window_end_x, int window_step_x, const int8_t *input1_ptr, const int8_t *input2_ptr, int8_t *output_ptr, int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2, float32x4_t voffseto, float32x4_t invvscaleo) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { // Get inputs and compute output const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1); const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2); const float32x4x4_t rf = elementwise_arithm_op(af, bf); store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo); } return x; } template inline int elementwise_arithm_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x, const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr, int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast, float32x4_t voffseto, float32x4_t invvscaleo, bool reorder) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast); const float32x4x4_t rf = elementwise_arithm_op(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector); store_quantized(output_ptr + x, rf, voffseto, invvscaleo); } return x; } template inline int elementwise_arithm_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x, const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, int8_t *output_ptr, int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast, float32x4_t voffseto, float32x4_t invvscaleo, bool reorder) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast); const float32x4x4_t rf = elementwise_arithm_op(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector); store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo); } return x; } template inline int elementwise_comp_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x, const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr, int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2, float32x4_t voffseto, float32x4_t invvscaleo) { ARM_COMPUTE_UNUSED(voffseto, invvscaleo); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1); const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2); const uint32x4x4_t rf = elementwise_comp_op(af, bf); store_quantized(output_ptr + x, rf); } return x; } template inline int elementwise_comp_op_quantized_signed_loop(int window_start_x, int window_end_x, int window_step_x, const int8_t *input1_ptr, const int8_t *input2_ptr, uint8_t *output_ptr, int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2, float32x4_t voffseto, float32x4_t invvscaleo) { ARM_COMPUTE_UNUSED(voffseto, invvscaleo); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1); const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2); const uint32x4x4_t rf = elementwise_comp_op(af, bf); store_quantized(output_ptr + x, rf); } return x; } template inline int elementwise_comp_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x, const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr, int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast, float32x4_t voffseto, float32x4_t invvscaleo, bool reorder) { ARM_COMPUTE_UNUSED(voffseto, invvscaleo); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast); const uint32x4x4_t rf = elementwise_comp_op(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector); store_quantized(output_ptr + x, rf); } return x; } template inline int elementwise_comp_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x, const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr, int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast, float32x4_t voffseto, float32x4_t invvscaleo, bool reorder) { ARM_COMPUTE_UNUSED(voffseto, invvscaleo); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast); const uint32x4x4_t rf = elementwise_comp_op(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector); store_quantized(output_ptr + x, rf); } return x; } inline void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo), int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t, float32x4_t, float32x4_t, const bool), int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *, int32x4_t, int32x4_t, float32x4_t, float32x4_t, float32x4_t, float32x4_t)) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform(); // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero) const float32x4_t voffseto = vdupq_n_f32(output_qinfo.offset + 0.5f); const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale); if (is_broadcast_across_x) { // Select the broadcast input on the X axis const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform(); const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform(); const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset); const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const uint8_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_u8(broadcast_value), broadcast_qinfo); int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr, voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2); for (; x < window_end_x; ++x) { const float afs = dequantize_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo); const float bfs = dequantize_qasymm8(broadcast_value, broadcast_qinfo); *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo); } }, broadcast_input, non_broadcast_input, output); } else { const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform(); const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform(); // Input1 quantization info const int32x4_t voffset1 = vdupq_n_s32(input1_qinfo.offset); const float32x4_t vscale1 = vdupq_n_f32(input1_qinfo.scale); // Input2 quantization info const int32x4_t voffset2 = vdupq_n_s32(input2_qinfo.offset); const float32x4_t vscale2 = vdupq_n_f32(input2_qinfo.scale); // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2, vscale1, vscale2, voffseto, invvscaleo); for (; x < window_end_x; ++x) { const float afs = dequantize_qasymm8(*(input1_ptr + x), input1_qinfo); const float bfs = dequantize_qasymm8(*(input2_ptr + x), input2_qinfo); *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo); } }, input1, input2, output); } } inline void elementwise_comp_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo), int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t, float32x4_t, float32x4_t, const bool), int (*neon_func)(int, int, int, const int8_t *, const int8_t *, uint8_t *, int32x4_t, int32x4_t, float32x4_t, float32x4_t, float32x4_t, float32x4_t)) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform(); const float32x4_t voffseto = vdupq_n_f32(output_qinfo.offset); const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale); if (is_broadcast_across_x) { // Select the broadcast input on the X axis const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform(); const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform(); const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset); const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const int8_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo); int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr, voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2); for (; x < window_end_x; ++x) { const float afs = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo); const float bfs = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo); *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo); } }, broadcast_input, non_broadcast_input, output); } else { const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform(); const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform(); // Input1 quantization info const int32x4_t voffset1 = vdupq_n_s32(input1_qinfo.offset); const float32x4_t vscale1 = vdupq_n_f32(input1_qinfo.scale); // Input2 quantization info const int32x4_t voffset2 = vdupq_n_s32(input2_qinfo.offset); const float32x4_t vscale2 = vdupq_n_f32(input2_qinfo.scale); // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2, vscale1, vscale2, voffseto, invvscaleo); for (; x < window_end_x; ++x) { const float afs = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo); const float bfs = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo); *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo); } }, input1, input2, output); } } inline void elementwise_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo), int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, int8_t *, int32x4_t, float32x4_t, float32x4_t, float32x4_t, const bool), int (*neon_func)(int, int, int, const int8_t *, const int8_t *, int8_t *, int32x4_t, int32x4_t, float32x4_t, float32x4_t, float32x4_t, float32x4_t)) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform(); const float32x4_t voffseto = vdupq_n_f32(output_qinfo.offset); const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale); if (is_broadcast_across_x) { // Select the broadcast input on the X axis const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform(); const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform(); const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset); const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const int8_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo); int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr, voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2); for (; x < window_end_x; ++x) { const float afs = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo); const float bfs = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo); *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo); } }, broadcast_input, non_broadcast_input, output); } else { const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform(); const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform(); // Input1 quantization info const int32x4_t voffset1 = vdupq_n_s32(input1_qinfo.offset); const float32x4_t vscale1 = vdupq_n_f32(input1_qinfo.scale); // Input2 quantization info const int32x4_t voffset2 = vdupq_n_s32(input2_qinfo.offset); const float32x4_t vscale2 = vdupq_n_f32(input2_qinfo.scale); // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2, vscale1, vscale2, voffseto, invvscaleo); for (; x < window_end_x; ++x) { const float afs = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo); const float bfs = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo); *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo); } }, input1, input2, output); } } template void elementwise_arithm_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op_quantized(in1, in2, out, window, &elementwise_arithm_op_quantized_scalar, &elementwise_arithm_op_quantized_broadcast_loop, &elementwise_arithm_op_quantized_loop); } template void elementwise_arithm_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op_quantized_signed(in1, in2, out, window, &elementwise_arithm_op_quantized_signed_scalar, &elementwise_arithm_op_quantized_signed_broadcast_loop, &elementwise_arithm_op_quantized_singed_loop); } template void elementwise_comp_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op_quantized(in1, in2, out, window, &elementwise_comp_op_quantized_scalar, &elementwise_comp_op_quantized_broadcast_loop, &elementwise_comp_op_quantized_loop); } template void elementwise_comp_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_comp_quantized_signed(in1, in2, out, window, &elementwise_comp_op_quantized_scalar, &elementwise_comp_op_quantized_signed_broadcast_loop, &elementwise_comp_op_quantized_signed_loop); } } // namespace cpu } // namespace arm_compute #endif /* SRC_CORE_NEON_KERNELS_ELEMENTWISE_IMPL_H */