/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEPriorBoxLayerKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include #include namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const PriorBoxLayerInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input1, input2); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2); // Check variances const int var_size = info.variances().size(); if(var_size > 1) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(var_size != 4, "Must provide 4 variance values"); for(int i = 0; i < var_size; ++i) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(var_size <= 0, "Must be greater than 0"); } } ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.steps()[0] < 0.f, "Step x should be greater or equal to 0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.steps()[1] < 0.f, "Step y should be greater or equal to 0"); if(!info.max_sizes().empty()) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.max_sizes().size() != info.min_sizes().size(), "Max and min sizes dimensions should match"); } for(unsigned int i = 0; i < info.max_sizes().size(); ++i) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.max_sizes()[i] < info.min_sizes()[i], "Max size should be greater than min size"); } if(output != nullptr && output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(get_data_layout_dimension_index(input1->data_layout(), DataLayoutDimension::HEIGHT)) != 2); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input1, output); } return Status{}; } std::pair validate_and_configure_window(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output, const PriorBoxLayerInfo &info) { ARM_COMPUTE_UNUSED(input2); Window win = {}; bool window_changed = false; switch(input1->data_layout()) { case DataLayout::NCHW: { const int num_priors = info.aspect_ratios().size() * info.min_sizes().size() + info.max_sizes().size(); const unsigned int num_elems_processed_per_iteration = 4 * num_priors; win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); window_changed = update_window_and_padding(win, output_access); break; } case DataLayout::NHWC: { win = calculate_max_window(*output, Steps()); break; } default: ARM_COMPUTE_ERROR("Not implemented"); }; Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace NEPriorBoxLayerKernel::NEPriorBoxLayerKernel() : _func(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _info() { } template void NEPriorBoxLayerKernel::store_coordinates(float *out, const int offset, const float center_x, const float center_y, const float box_width, const float box_height, const int width, const int height) { float xmin = (center_x - box_width / 2.f) / width; float ymin = (center_y - box_height / 2.f) / height; float xmax = (center_x + box_width / 2.f) / width; float ymax = (center_y + box_height / 2.f) / height; switch(DL) { case DataLayout::NCHW: { float32x4_t vec_elements = { xmin, ymin, xmax, ymax }; if(_info.clip()) { static const float32x4_t CONST_0 = vdupq_n_f32(0.f); static const float32x4_t CONST_1 = vdupq_n_f32(1.f); vec_elements = vmaxq_f32(vminq_f32(vec_elements, CONST_1), CONST_0); } vst1q_f32(out + offset, vec_elements); } break; case DataLayout::NHWC: { const int output_offset = _output->info()->strides_in_bytes()[1] / _output->info()->element_size(); if(_info.clip()) { xmin = std::min(std::max(xmin, 0.f), 1.f); ymin = std::min(std::max(ymin, 0.f), 1.f); xmax = std::min(std::max(xmax, 0.f), 1.f); ymax = std::min(std::max(ymax, 0.f), 1.f); } *(out + output_offset * offset) = xmin; *(out + output_offset * (offset + 1)) = ymin; *(out + output_offset * (offset + 2)) = xmax; *(out + output_offset * (offset + 3)) = ymax; } break; default: ARM_COMPUTE_ERROR("Not implemented"); } } template void NEPriorBoxLayerKernel::calculate_prior_boxes(const Window &window) { const int num_priors = _info.aspect_ratios().size() * _info.min_sizes().size() + _info.max_sizes().size(); const int width_idx = get_data_layout_dimension_index(DL, DataLayoutDimension::WIDTH); const int height_idx = get_data_layout_dimension_index(DL, DataLayoutDimension::HEIGHT); const int layer_width = _input1->info()->dimension(width_idx); const int layer_height = _input1->info()->dimension(height_idx); int img_width = _info.img_size().x; int img_height = _info.img_size().y; if(img_width == 0 || img_height == 0) { img_width = _input2->info()->dimension(width_idx); img_height = _input2->info()->dimension(height_idx); } float step_x = _info.steps()[0]; float step_y = _info.steps()[1]; if(step_x == 0.f || step_y == 0.f) { step_x = static_cast(img_width) / layer_width; step_y = static_cast(img_height) / layer_height; } Window slice = {}; switch(DL) { case DataLayout::NCHW: slice = window.first_slice_window_2D(); slice.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), 2)); break; case DataLayout::NHWC: slice = window.first_slice_window_3D(); slice.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), 4 * num_priors)); slice.set(Window::DimZ, Window::Dimension(0, _output->info()->dimension(2), 2)); break; default: ARM_COMPUTE_ERROR("Not implemented"); } Iterator output(_output, slice); execute_window_loop(slice, [&](const Coordinates & id) { float center_x = 0; float center_y = 0; int idx = 0; switch(DL) { case DataLayout::NCHW: idx = id.x() / (4 * num_priors); center_x = (static_cast(idx % layer_width) + _info.offset()) * step_x; center_y = (static_cast(idx / layer_width) + _info.offset()) * step_y; break; case DataLayout::NHWC: idx = id.y() / (4 * num_priors); center_x = (static_cast(idx % layer_width) + _info.offset()) * step_x; center_y = (static_cast(idx / layer_width) + _info.offset()) * step_y; break; default: ARM_COMPUTE_ERROR("Not implemented"); } float box_width; float box_height; int offset = 0; auto out = reinterpret_cast(output.ptr()); for(unsigned int i = 0; i < _info.min_sizes().size(); ++i) { const float min_size = _info.min_sizes().at(i); box_width = min_size; box_height = min_size; store_coordinates
(out, offset, center_x, center_y, box_width, box_height, img_width, img_height); offset += 4; if(!_info.max_sizes().empty()) { const float max_size = _info.max_sizes().at(i); box_width = std::sqrt(min_size * max_size); box_height = box_width; store_coordinates
(out, offset, center_x, center_y, box_width, box_height, img_width, img_height); offset += 4; } // rest of priors for(auto ar : _info.aspect_ratios()) { if(fabs(ar - 1.) < 1e-6) { continue; } box_width = min_size * sqrt(ar); box_height = min_size / sqrt(ar); store_coordinates
(out, offset, center_x, center_y, box_width, box_height, img_width, img_height); offset += 4; } } // set the variance switch(DL) { case DataLayout::NCHW: { out = reinterpret_cast(_output->ptr_to_element(Coordinates(id.x(), 1))); float32x4_t var; if(_info.variances().size() == 1) { var = vdupq_n_f32(_info.variances().at(0)); } else { const float32x4_t vars = { _info.variances().at(0), _info.variances().at(1), _info.variances().at(2), _info.variances().at(3) }; var = vars; } for(int i = 0; i < num_priors; ++i) { vst1q_f32(out + 4 * i, var); } } break; case DataLayout::NHWC: { for(int i = 0; i < num_priors; ++i) { const int prior_offset = 4 * i; const bool single_var = _info.variances().size() == 1; *(reinterpret_cast(_output->ptr_to_element(Coordinates(0, id.y() + prior_offset + 0, 1)))) = _info.variances().at(0); *(reinterpret_cast(_output->ptr_to_element(Coordinates(0, id.y() + prior_offset + 1, 1)))) = single_var ? _info.variances().at(0) : _info.variances().at(1); *(reinterpret_cast(_output->ptr_to_element(Coordinates(0, id.y() + prior_offset + 2, 1)))) = single_var ? _info.variances().at(0) : _info.variances().at(2); *(reinterpret_cast(_output->ptr_to_element(Coordinates(0, id.y() + prior_offset + 3, 1)))) = single_var ? _info.variances().at(0) : _info.variances().at(3); } } break; default: ARM_COMPUTE_ERROR("Not implemented"); } }, output); } void NEPriorBoxLayerKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, const PriorBoxLayerInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(), info)); _input1 = input1; _input2 = input2; _info = info; _output = output; switch(input1->info()->data_layout()) { case DataLayout::NCHW: { _func = &NEPriorBoxLayerKernel::calculate_prior_boxes; break; } case DataLayout::NHWC: { _func = &NEPriorBoxLayerKernel::calculate_prior_boxes; break; } default: ARM_COMPUTE_ERROR("Not implemented."); } // Configure kernel window auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info(), info); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } Status NEPriorBoxLayerKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const PriorBoxLayerInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get(), info) .first); return Status{}; } void NEPriorBoxLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); // Run function (this->*_func)(window); } } // namespace arm_compute