/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEGEMMLowpFinalizeKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute template void NEGEMMLowpFinalizeKernel::finalize(const Window &window) { const int32x4_t c_offset_s32 = vdupq_n_s32(_c_offset); const int32x4_t shift_s32 = vdupq_n_s32(-_shift); Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimZ); if(add_a_offset && add_b_offset) // true, true { // Set window for vector_sum_col Window win_vector_sum_col(collapsed_window); win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); if(!_slide_vector_sum_col) { win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); } // Set window for vector_sum_row Window win_vector_sum_row(collapsed_window); win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator vector_sum_col(_vector_sum_col, win_vector_sum_col); Iterator vector_sum_row(_vector_sum_row, win_vector_sum_row); Iterator mm_result(_mm_result, window); Iterator out(_output, window); execute_window_loop(window, [&](const Coordinates & id) { // Compute the leftover term due to a_offset. int32x4x4_t a_offset_term_s32 = { { vld1q_s32(reinterpret_cast(vector_sum_col.ptr()) + 0), vld1q_s32(reinterpret_cast(vector_sum_col.ptr()) + 4), vld1q_s32(reinterpret_cast(vector_sum_col.ptr()) + 8), vld1q_s32(reinterpret_cast(vector_sum_col.ptr()) + 12) } }; a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], _a_offset); a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], _a_offset); a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], _a_offset); a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], _a_offset); // Compute the leftover term due to b_offset. int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast(vector_sum_row.ptr()) + id.y()); b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, _b_offset); // Add a_offset_term_s32 and b_offset_term_s32 int32x4x4_t offset_term_s32 = { { vdupq_n_s32(_k_offset), vdupq_n_s32(_k_offset), vdupq_n_s32(_k_offset), vdupq_n_s32(_k_offset) } }; offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32)); offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32)); offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32)); offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32)); // Add c_offset offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], c_offset_s32); offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], c_offset_s32); offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], c_offset_s32); offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], c_offset_s32); int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(mm_result.ptr()) + 0), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 4), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 8), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 12) } }; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]); // Multiply by c_mult_int in_s32.val[0] = vmulq_n_s32(in_s32.val[0], _c_mult_int); in_s32.val[1] = vmulq_n_s32(in_s32.val[1], _c_mult_int); in_s32.val[2] = vmulq_n_s32(in_s32.val[2], _c_mult_int); in_s32.val[3] = vmulq_n_s32(in_s32.val[3], _c_mult_int); // Shift final result (negative value shift right) in_s32.val[0] = vshlq_s32(in_s32.val[0], shift_s32); in_s32.val[1] = vshlq_s32(in_s32.val[1], shift_s32); in_s32.val[2] = vshlq_s32(in_s32.val[2], shift_s32); in_s32.val[3] = vshlq_s32(in_s32.val[3], shift_s32); // Convert S32 to U16 const int16x8x2_t in_s16 = { { vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])), vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3])), } }; // Convert S16 to S8 const int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1])); vst1q_s8(reinterpret_cast(out.ptr()), out_s8); }, vector_sum_col, vector_sum_row, mm_result, out); } else if(!add_a_offset && add_b_offset) // false, true { // Set window for vector_sum_row Window win_vector_sum_row(collapsed_window); win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator vector_sum_row(_vector_sum_row, win_vector_sum_row); Iterator mm_result(_mm_result, window); Iterator out(_output, window); execute_window_loop(window, [&](const Coordinates & id) { // Compute the leftover term due to b_offset. int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast(vector_sum_row.ptr()) + id.y()); b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, _b_offset); // Add b_offset_term_s32 and c_offset_term_s32 int32x4_t offset_term_s32 = vaddq_s32(b_offset_term_s32, c_offset_s32); int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(mm_result.ptr()) + 0), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 4), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 8), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 12) } }; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32); in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32); in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32); in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32); // Multiply by c_mult_int in_s32.val[0] = vmulq_n_s32(in_s32.val[0], _c_mult_int); in_s32.val[1] = vmulq_n_s32(in_s32.val[1], _c_mult_int); in_s32.val[2] = vmulq_n_s32(in_s32.val[2], _c_mult_int); in_s32.val[3] = vmulq_n_s32(in_s32.val[3], _c_mult_int); // Shift final result (negative value shift right) in_s32.val[0] = vshlq_s32(in_s32.val[0], shift_s32); in_s32.val[1] = vshlq_s32(in_s32.val[1], shift_s32); in_s32.val[2] = vshlq_s32(in_s32.val[2], shift_s32); in_s32.val[3] = vshlq_s32(in_s32.val[3], shift_s32); // Convert S32 to U16 const int16x8x2_t in_s16 = { { vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])), vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3])), } }; // Convert S16 to S8 const int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1])); vst1q_s8(reinterpret_cast(out.ptr()), out_s8); }, vector_sum_row, mm_result, out); } else if(add_a_offset && !add_b_offset) // true, false { // Set window for vector_sum_col Window win_vector_sum_col(collapsed_window); win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); if(!_slide_vector_sum_col) { win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); } Iterator vector_sum_col(_vector_sum_col, win_vector_sum_col); Iterator mm_result(_mm_result, window); Iterator out(_output, window); execute_window_loop(window, [&](const Coordinates & id) { // Compute the leftover term due to a_offset. int32x4x4_t a_offset_term_s32 = { { vld1q_s32(reinterpret_cast(vector_sum_col.ptr()) + 0), vld1q_s32(reinterpret_cast(vector_sum_col.ptr()) + 4), vld1q_s32(reinterpret_cast(vector_sum_col.ptr()) + 8), vld1q_s32(reinterpret_cast(vector_sum_col.ptr()) + 12) } }; a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], _a_offset); a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], _a_offset); a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], _a_offset); a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], _a_offset); // Add a_offset_term_s32 and b_offset_term_s32 int32x4x4_t offset_term_s32 = { { vaddq_s32(c_offset_s32, a_offset_term_s32.val[0]), vaddq_s32(c_offset_s32, a_offset_term_s32.val[1]), vaddq_s32(c_offset_s32, a_offset_term_s32.val[2]), vaddq_s32(c_offset_s32, a_offset_term_s32.val[3]) } }; int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(mm_result.ptr()) + 0), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 4), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 8), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 12) } }; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]); // Multiply by c_mult_int in_s32.val[0] = vmulq_n_s32(in_s32.val[0], _c_mult_int); in_s32.val[1] = vmulq_n_s32(in_s32.val[1], _c_mult_int); in_s32.val[2] = vmulq_n_s32(in_s32.val[2], _c_mult_int); in_s32.val[3] = vmulq_n_s32(in_s32.val[3], _c_mult_int); // Shift final result (negative value shift right) in_s32.val[0] = vshlq_s32(in_s32.val[0], shift_s32); in_s32.val[1] = vshlq_s32(in_s32.val[1], shift_s32); in_s32.val[2] = vshlq_s32(in_s32.val[2], shift_s32); in_s32.val[3] = vshlq_s32(in_s32.val[3], shift_s32); // Convert S32 to S16 const int16x8x2_t in_s16 = { { vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])), vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3])) } }; // Convert S16 to S8 const int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1])); vst1q_s8(reinterpret_cast(out.ptr()), out_s8); }, vector_sum_col, mm_result, out); } else // false, false { Iterator mm_result(_mm_result, window); Iterator out(_output, window); execute_window_loop(window, [&](const Coordinates & id) { int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(mm_result.ptr()) + 0), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 4), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 8), vld1q_s32(reinterpret_cast(mm_result.ptr()) + 12) } }; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], c_offset_s32); in_s32.val[1] = vaddq_s32(in_s32.val[1], c_offset_s32); in_s32.val[2] = vaddq_s32(in_s32.val[2], c_offset_s32); in_s32.val[3] = vaddq_s32(in_s32.val[3], c_offset_s32); // Multiply by c_mult_int in_s32.val[0] = vmulq_n_s32(in_s32.val[0], _c_mult_int); in_s32.val[1] = vmulq_n_s32(in_s32.val[1], _c_mult_int); in_s32.val[2] = vmulq_n_s32(in_s32.val[2], _c_mult_int); in_s32.val[3] = vmulq_n_s32(in_s32.val[3], _c_mult_int); // Shift final result (negative value shift right) in_s32.val[0] = vshlq_s32(in_s32.val[0], shift_s32); in_s32.val[1] = vshlq_s32(in_s32.val[1], shift_s32); in_s32.val[2] = vshlq_s32(in_s32.val[2], shift_s32); in_s32.val[3] = vshlq_s32(in_s32.val[3], shift_s32); // Convert S32 to S16 const int16x8x2_t in_s16 = { { vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])), vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3])) } }; // Convert U16 to S8 const int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1])); vst1q_s8(reinterpret_cast(out.ptr()), out_s8); }, mm_result, out); } } NEGEMMLowpFinalizeKernel::NEGEMMLowpFinalizeKernel() : _func(nullptr), _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr), _output(nullptr), _a_offset(0), _b_offset(0), _c_offset(0), _k_offset(0), _c_mult_int(0), _shift(0), _slide_vector_sum_col(true) { } void NEGEMMLowpFinalizeKernel::configure(const ITensor *vector_sum_col, const ITensor *vector_sum_row, const ITensor *mm_result, ITensor *output, int32_t num_mtx_a_cols, int32_t a_offset, int32_t b_offset, int32_t c_offset, int32_t c_mult_int, int32_t shift) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S8); TensorShape mm_result_shape = mm_result->info()->tensor_shape(); TensorShape output_shape = output->info()->tensor_shape(); mm_result_shape.collapse(2); output_shape.collapse(2); ARM_COMPUTE_ERROR_ON_MSG(mm_result_shape[2] != output_shape[2], "mm_result tensor must have the same number of batches of output tensor"); // If a_offset == 0, vector_sum_col can be a nullptr if(a_offset != 0) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32); ARM_COMPUTE_ERROR_ON(vector_sum_col->info()->dimension(0) != mm_result->info()->dimension(0)); TensorShape vector_sum_col_shape = vector_sum_col->info()->tensor_shape(); vector_sum_col_shape.collapse(1); // Check if vector_sum_col_shape should be slidden or not // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation _slide_vector_sum_col = vector_sum_col_shape[1] != 1; } // If b_offset == 0, vector_sum_row can be a nullptr if(b_offset != 0) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32); ARM_COMPUTE_ERROR_ON(vector_sum_row->info()->dimension(0) != mm_result->info()->dimension(1)); TensorShape vector_sum_row_shape = vector_sum_row->info()->tensor_shape(); vector_sum_row_shape.collapse(1); ARM_COMPUTE_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[2], "mm_result tensor must have the same number of batches of output tensor"); if(a_offset != 0) { TensorShape vector_sum_col_shape = vector_sum_col->info()->tensor_shape(); vector_sum_col_shape.collapse(1); ARM_COMPUTE_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1], "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1"); } } _vector_sum_col = vector_sum_col; _vector_sum_row = vector_sum_row; _mm_result = mm_result; _output = output; _a_offset = a_offset; _b_offset = b_offset; _k_offset = a_offset * b_offset * num_mtx_a_cols; _c_offset = c_offset; _c_mult_int = c_mult_int; _shift = shift; constexpr unsigned int num_elems_processed_per_iteration = 16; // Configure kernel window Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal mm_result_access(mm_result->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_result_access(output->info(), 0, num_elems_processed_per_iteration); // Accordingly with a_offset and b_offset, we can have 4 cases: // a_offset != 0 && b_offset != 0 // a_offset = 0 && b_offset != 0 // a_offset != 0 && b_offset = 0 // a_offset = 0 && b_offset = 0 if(a_offset != 0 && b_offset != 0) { // Set the function to use _func = &NEGEMMLowpFinalizeKernel::finalize; AccessWindowStatic vector_sum_row_access(vector_sum_row->info(), 0, 0, vector_sum_row->info()->dimension(0), 0); AccessWindowHorizontal vector_sum_col_access(vector_sum_col->info(), 0, num_elems_processed_per_iteration); update_window_and_padding(win, vector_sum_col_access, vector_sum_row_access, mm_result_access, output_result_access); } else if(a_offset == 0 && b_offset != 0) { // Set the function to use _func = &NEGEMMLowpFinalizeKernel::finalize; AccessWindowStatic vector_sum_row_access(vector_sum_row->info(), 0, 0, vector_sum_row->info()->dimension(0), 0); update_window_and_padding(win, vector_sum_row_access, mm_result_access, output_result_access); } else if(a_offset != 0 && b_offset == 0) { // Set the function to use _func = &NEGEMMLowpFinalizeKernel::finalize; AccessWindowHorizontal vector_sum_col_access(vector_sum_col->info(), 0, num_elems_processed_per_iteration); update_window_and_padding(win, vector_sum_col_access, mm_result_access, output_result_access); } else { // Set the function to use _func = &NEGEMMLowpFinalizeKernel::finalize; update_window_and_padding(win, mm_result_access, output_result_access); } output_result_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->info()->tensor_shape())); INEKernel::configure(win); } void NEGEMMLowpFinalizeKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); (this->*_func)(window); }