/* * Copyright (c) 2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #if defined(__ARM_FEATURE_SVE) namespace arm_compute { inline svfloat32_t svtaylor_poly_f32_z(svbool_t pg, svfloat32_t x, const std::array &coeffs) { const auto A = svmla_f32_z(pg, coeffs[0], coeffs[4], x); const auto B = svmla_f32_z(pg, coeffs[2], coeffs[6], x); const auto C = svmla_f32_z(pg, coeffs[1], coeffs[5], x); const auto D = svmla_f32_z(pg, coeffs[3], coeffs[7], x); const auto x2 = svmul_f32_z(pg, x, x); const auto x4 = svmul_f32_z(pg, x2, x2); const auto res = svmla_f32_z(pg, svmla_f32_z(pg, A, B, x2), svmla_f32_z(pg, C, D, x2), x4); return res; } inline svfloat16_t svtaylor_poly_f16_z(svbool_t pg, svfloat16_t x, const std::array &coeffs) { const auto A = svmla_f16_z(pg, coeffs[0], coeffs[4], x); const auto B = svmla_f16_z(pg, coeffs[2], coeffs[6], x); const auto C = svmla_f16_z(pg, coeffs[1], coeffs[5], x); const auto D = svmla_f16_z(pg, coeffs[3], coeffs[7], x); const auto x2 = svmul_f16_z(pg, x, x); const auto x4 = svmul_f16_z(pg, x2, x2); const auto res = svmla_f16_z(pg, svmla_f16_z(pg, A, B, x2), svmla_f16_z(pg, C, D, x2), x4); return res; } inline svfloat16_t svinv_f16_z(svbool_t pg, svfloat16_t x) { auto recip = svrecpe_f16(x); recip = svmul_f16_z(pg, svrecps_f16(x, recip), recip); recip = svmul_f16_z(pg, svrecps_f16(x, recip), recip); return recip; } inline svfloat32_t svinv_f32_z(svbool_t pg, svfloat32_t x) { auto recip = svrecpe_f32(x); recip = svmul_f32_z(pg, svrecps_f32(x, recip), recip); recip = svmul_f32_z(pg, svrecps_f32(x, recip), recip); return recip; } inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x) { const auto CONST_LN2 = svdup_n_f32(0.6931471805f); // ln(2) const auto CONST_INV_LN2 = svdup_n_f32(1.4426950408f); // 1/ln(2) const auto CONST_INF = svdup_n_f32(std::numeric_limits::infinity()); const auto CONST_MAX_INPUT = svdup_n_f32(88.7f); const auto CONST_0 = svdup_n_f32(0.f); const auto CONST_NEGATIVE_126 = svdup_n_s32(-126); /** Exponent polynomial coefficients */ const std::array exp_tab = { { svdup_n_f32(1.f), svdup_n_f32(0.0416598916054f), svdup_n_f32(0.500000596046f), svdup_n_f32(0.0014122662833f), svdup_n_f32(1.00000011921f), svdup_n_f32(0.00833693705499f), svdup_n_f32(0.166665703058f), svdup_n_f32(0.000195780929062f), } }; // Perform range reduction [-log(2),log(2)] auto m = svcvt_s32_f32_z(pg, svmul_f32_z(pg, x, CONST_INV_LN2)); auto val = svmls_f32_z(pg, x, svcvt_f32_s32_z(pg, m), CONST_LN2); // Polynomial Approximation auto poly = svtaylor_poly_f32_z(pg, val, exp_tab); // Reconstruct poly = svreinterpret_f32_s32(svqadd_s32(svreinterpret_s32_f32(poly), svlsl_n_s32_z(pg, m, 23))); // Handle underflow svbool_t ltpg = svcmplt_s32(pg, m, CONST_NEGATIVE_126); poly = svsel_f32(ltpg, CONST_0, poly); // Handle overflow svbool_t gtpg = svcmpgt_f32(pg, x, CONST_MAX_INPUT); poly = svsel_f32(gtpg, CONST_INF, poly); return poly; } inline svfloat16_t svexp_f16_z(svbool_t pg, svfloat16_t x) { const auto CONST_LN2 = svdup_n_f16(0.6931471805f); // ln(2) const auto CONST_INV_LN2 = svdup_n_f16(1.4426950408f); // 1/ln(2) const auto CONST_INF = svdup_n_f16(std::numeric_limits::infinity()); const auto CONST_MAX_INPUT = svdup_n_f16(88.7f); const auto CONST_0 = svdup_n_f16(0.f); const auto CONST_NEGATIVE_126 = svdup_n_s16(-126); /** Exponent polynomial coefficients */ const std::array exp_tab = { { svdup_n_f16(1.f), svdup_n_f16(0.0416598916054f), svdup_n_f16(0.500000596046f), svdup_n_f16(0.0014122662833f), svdup_n_f16(1.00000011921f), svdup_n_f16(0.00833693705499f), svdup_n_f16(0.166665703058f), svdup_n_f16(0.000195780929062f), } }; // Perform range reduction [-log(2),log(2)] auto m = svcvt_s16_f16_z(pg, svmul_f16_z(pg, x, CONST_INV_LN2)); auto val = svmls_f16_z(pg, x, svcvt_f16_s16_z(pg, m), CONST_LN2); // Polynomial Approximation auto poly = svtaylor_poly_f16_z(pg, val, exp_tab); // Reconstruct poly = svreinterpret_f16_s16(svqadd_s16(svreinterpret_s16_f16(poly), svlsl_n_s16_z(pg, m, 11))); // Handle underflow svbool_t ltpg = svcmplt_s16(pg, m, CONST_NEGATIVE_126); poly = svsel_f16(ltpg, CONST_0, poly); // Handle overflow svbool_t gtpg = svcmpgt_f16(pg, x, CONST_MAX_INPUT); poly = svsel_f16(gtpg, CONST_INF, poly); return poly; } inline svfloat32_t svtanh_f32_z(svbool_t pg, svfloat32_t val) { const svfloat32_t CONST_1 = svdup_n_f32(1.f); const svfloat32_t CONST_2 = svdup_n_f32(2.f); const svfloat32_t CONST_MIN_TANH = svdup_n_f32(-10.f); const svfloat32_t CONST_MAX_TANH = svdup_n_f32(10.f); svfloat32_t x = svmin_f32_z(pg, svmax_f32_z(pg, val, CONST_MIN_TANH), CONST_MAX_TANH); svfloat32_t exp2x = svexp_f32_z(pg, svmul_f32_z(pg, CONST_2, x)); svfloat32_t num = svsub_f32_z(pg, exp2x, CONST_1); svfloat32_t den = svadd_f32_z(pg, exp2x, CONST_1); svfloat32_t tanh = svdiv_f32_z(pg, num, den); return tanh; } inline svfloat16_t svtanh_f16_z(svbool_t pg, svfloat16_t val) { const svfloat16_t CONST_1 = svdup_n_f16(1.f); const svfloat16_t CONST_2 = svdup_n_f16(2.f); const svfloat16_t CONST_MIN_TANH = svdup_n_f16(-10.f); const svfloat16_t CONST_MAX_TANH = svdup_n_f16(10.f); const svfloat16_t x = svmin_f16_z(pg, svmax_f16_z(pg, val, CONST_MIN_TANH), CONST_MAX_TANH); const svfloat16_t exp2x = svexp_f16_z(pg, svmul_f16_z(pg, CONST_2, x)); const svfloat16_t num = svsub_f16_z(pg, exp2x, CONST_1); const svfloat16_t den = svadd_f16_z(pg, exp2x, CONST_1); const svfloat16_t tanh = svdiv_f16_z(pg, num, den); return tanh; } inline svfloat32_t svlog_f32_z(svbool_t pg, svfloat32_t x) { #if defined(__ARM_FEATURE_SVE2) return svcvt_f32_s32_z(pg, svlogb_f32_z(pg, x)); #else /* !defined(__ARM_FEATURE_SVE2) */ /** Logarithm polynomial coefficients */ const std::array log_tab = { { svdup_n_f32(-2.29561495781f), svdup_n_f32(-2.47071170807f), svdup_n_f32(-5.68692588806f), svdup_n_f32(-0.165253549814f), svdup_n_f32(5.17591238022f), svdup_n_f32(0.844007015228f), svdup_n_f32(4.58445882797f), svdup_n_f32(0.0141278216615f), } }; const auto CONST_127 = svdup_n_s32(127); // 127 const auto CONST_LN2 = svdup_n_f32(0.6931471805f); // ln(2) // Extract exponent auto m = svsub_s32_z(pg, svasr_n_s32_z(pg, svreinterpret_s32_f32(x), 23), CONST_127); auto val = svreinterpret_f32_s32(svsub_s32_z(pg, svreinterpret_s32_f32(x), svlsl_n_s32_z(pg, m, 23))); // Polynomial Approximation auto poly = svtaylor_poly_f32_z(pg, val, log_tab); // Reconstruct poly = svmla_f32_z(pg, poly, svcvt_f32_s32_z(pg, m), CONST_LN2); return poly; #endif /* defined(__ARM_FEATURE_SVE2) */ } inline svfloat16_t svlog_f16_z(svbool_t pg, svfloat16_t x) { #if defined(__ARM_FEATURE_SVE2) return svcvt_f16_s16_z(pg, svlogb_f16_z(pg, x)); #else /* !defined(__ARM_FEATURE_SVE2) */ /** Logarithm polynomial coefficients */ const std::array log_tab { { svdup_n_f16(-2.29561495781f), svdup_n_f16(-2.47071170807f), svdup_n_f16(-5.68692588806f), svdup_n_f16(-0.165253549814f), svdup_n_f16(5.17591238022f), svdup_n_f16(0.844007015228f), svdup_n_f16(4.58445882797f), svdup_n_f16(0.0141278216615f), } }; const auto CONST_7 = svdup_n_s16(7); // 7 const auto CONST_LN2 = svdup_n_f16(0.6931471805f); // ln(2) // Extract exponent auto m = svsub_s16_z(pg, svasr_n_s16_z(pg, svreinterpret_s16_f16(x), 11), CONST_7); auto val = svreinterpret_f16_s16(svsub_s16_z(pg, svreinterpret_s16_f16(x), svlsl_n_s16_z(pg, m, 11))); // Polynomial Approximation auto poly = svtaylor_poly_f16_z(pg, val, log_tab); // Reconstruct poly = svmla_f16_z(pg, poly, svcvt_f16_s16_z(pg, m), CONST_LN2); return poly; #endif /* defined(__ARM_FEATURE_SVE2) */ } } // namespace arm_compute #endif /* defined(__ARM_FEATURE_SVE) */