From fde45d836cf753a94915ac42d8a13da7edc52221 Mon Sep 17 00:00:00 2001 From: Adnan AlSinan Date: Tue, 24 Oct 2023 12:03:21 +0100 Subject: Extend CKW MatMul with nt_t - Add the kernel variant: (nt_t) to GpuCKWMatMul. - Extend CKW MatMul validation test with nt_t. - Fixes a bug in CKW where z-dim = 1. Resolves: COMPMID-6435 Signed-off-by: Adnan AlSinan Change-Id: I4c5e8791e55f21ffff3c11eca7802c51a4259977 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/10525 Comments-Addressed: Arm Jenkins Tested-by: Arm Jenkins Reviewed-by: Gian Marco Iodice Benchmark: Arm Jenkins --- tests/validation/dynamic_fusion/gpu/cl/MatMul.cpp | 350 ++++++++++++++++++++++ 1 file changed, 350 insertions(+) create mode 100644 tests/validation/dynamic_fusion/gpu/cl/MatMul.cpp (limited to 'tests/validation/dynamic_fusion') diff --git a/tests/validation/dynamic_fusion/gpu/cl/MatMul.cpp b/tests/validation/dynamic_fusion/gpu/cl/MatMul.cpp new file mode 100644 index 0000000000..38c3a0ca0e --- /dev/null +++ b/tests/validation/dynamic_fusion/gpu/cl/MatMul.cpp @@ -0,0 +1,350 @@ +/* + * Copyright (c) 2023 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#ifdef ACL_INTERNAL_TEST_CKW_IN_DF +#include "tests/AssetsLibrary.h" +#include "tests/CL/CLAccessor.h" +#include "tests/framework/Fixture.h" +#include "tests/framework/Macros.h" +#include "tests/framework/datasets/Datasets.h" +#include "tests/datasets/LargeMatMulDataset.h" +#include "tests/datasets/SmallMatMulDataset.h" +#include "tests/validation/Validation.h" +#include "tests/validation/reference/Permute.h" +#include "tests/validation/reference/GEMM.h" + +#include "tests/validation/fixtures/dynamic_fusion/gpu/cl/MatMulKernelFixture.h" + +#include + +namespace arm_compute +{ +namespace test +{ +namespace validation +{ +namespace +{ + RelativeTolerance tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */ +constexpr float abs_tolerance_f32( + 0.0001f); /**< Absolute tolerance value for comparing reference's output against implementation's output for floating point data types in case using relative tolerance fails because of small values */ +constexpr float abs_tolerance_f16( + 0.001f); /**< Absolute tolerance value for comparing reference's output against implementation's output for fp16 data types in case using relative tolerance fails because of small values */ + RelativeTolerance tolerance_f16(half(0.02)); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */ +} + +/** M0 values to test --precommit*/ +const auto m0_values_precommit = framework::dataset::make("M0", { 1, 3 }); + +/** N0 values to test --precommit*/ +const auto n0_values_precommit = framework::dataset::make("N0", { 1, 2, 4 }); + +/** K0 values to test --precommit*/ +const auto k0_values_precommit = framework::dataset::make("K0", { 1, 2, 3 }); + +/** M0 values to test --nightly*/ +const auto m0_values_nightly_lhs_nt = framework::dataset::make("M0", { 1, 2, 3, 4, 5, 6, 7, 8 }); +const auto m0_values_nightly_lhs_t = framework::dataset::make("M0", { 1, 2, 3, 4, 8 }); + +/** N0 values to test --nightly*/ +const auto n0_values_nightly_rhs_nt = framework::dataset::make("N0", { 1, 2, 3, 4, 8, 16 }); +const auto n0_values_nightly_rhs_t = framework::dataset::make("N0", { 1, 2, 3, 4, 8 }); + +/** K0 values to test --nightly*/ +const auto k0_values_nightly_lhs_nt_rhs_nt = framework::dataset::make("K0", { 1, 2, 3, 4, 8, 16 }); +const auto k0_values_nightly_rhs_t = framework::dataset::make("K0", { 1, 2, 3, 4, 8 }); +const auto k0_values_nightly_lhs_t_rhs_nt = framework::dataset::make("K0", { 1, 2, 3, 4, 5, 6, 7, 8 }); + +TEST_SUITE(CL) +TEST_SUITE(DYNAMIC_FUSION) + +TEST_SUITE(MatMul) + +TEST_SUITE(Validate) +TEST_CASE(SupportedBlockSizes, framework::DatasetMode::ALL) +{ + using MatMulConfigurationPair = std::pair; + + const std::vector supported_block_sizes = + { + // MatMulKernelInfo(adj_lhs, adj_rhs, M0, N0, K0, export_rhs_to_cl_image = false) + + // Lhs not-transposed, Rhs transposed + { MatMulKernelInfo(false, true, 0, 1, 1), false }, // M0 should be > 0 + { MatMulKernelInfo(false, true, 3, 11, 1), false }, // N0 not in {1, 2, 3, 4, 8, 16} + { MatMulKernelInfo(false, true, 3, 7, 1), false }, // N0 not in {1, 2, 3, 4, 8, 16} + { MatMulKernelInfo(false, true, 3, 3, 12), false }, // K0 not in {1, 2, 3, 4, 8, 16} + { MatMulKernelInfo(false, true, 3, 3, 6), false }, // K0 not in {1, 2, 3, 4, 8, 16} + { MatMulKernelInfo(false, true, 5, 1, 2), true }, + { MatMulKernelInfo(false, true, 3, 3, 3), true }, + { MatMulKernelInfo(false, true, 2, 4, 8), true }, + + }; + + // Create a new workload sketch + auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); + auto context = GpuWorkloadContext{ &cl_compile_ctx }; + GpuWorkloadSketch sketch{ &context }; + + // Set big enough shapes so that block sizes are not truncated. Also, set all dimensions equal + // so that it doesn't fail for different NT/T configurations. We aim to test the block sizes here, + // not the shapes themselves. + const TensorInfo lhs_info = context.create_tensor_info(TensorInfo(TensorShape(100U, 100U), 1, DataType::F32)); + const TensorInfo rhs_info = context.create_tensor_info(TensorInfo(TensorShape(100U, 100U), 1, DataType::F32)); + + for(auto &pair : supported_block_sizes) + { + MatMulAttributes matmul_attr {}; + matmul_attr.adj_lhs(pair.first.adj_lhs); + matmul_attr.adj_rhs(pair.first.adj_rhs); + + GpuMatMulSettings matmul_settings {}; + matmul_settings.m0(pair.first.m0); + matmul_settings.n0(pair.first.n0); + matmul_settings.k0(pair.first.k0); + + Status status = GpuMatMul::validate_op(sketch, &lhs_info, &rhs_info, matmul_attr, matmul_settings); + ARM_COMPUTE_EXPECT(bool(status) == pair.second, framework::LogLevel::ERRORS); + } +} + +TEST_CASE(ValidateInputShapes, framework::DatasetMode::ALL) +{ + // Create a sketch + auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); + auto context = GpuWorkloadContext{ &cl_compile_ctx }; + GpuWorkloadSketch sketch{ &context }; + + // Configurations are assumed to be Nt/Nt, but will be transposed inside the test to test other configurations + using ShapeConfigurationTuple = std::tuple; + const std::vector shape_configurations = + { + { TensorShape(5U, 1U), TensorShape(3U, 5U), true }, + { TensorShape(10U, 12U), TensorShape(3U, 10U), true }, + { TensorShape(8U, 4U), TensorShape(2U, 8U), true }, + { TensorShape(8U, 4U), TensorShape(2U, 5U), false }, // Mismatch in the K dimension + { TensorShape(5U, 0U), TensorShape(2U, 5U), false }, // Invalid dimension + { TensorShape(5U, 4U, 3U, 4U, 5U, 6U), TensorShape(2U, 5U, 3U, 4U, 5U, 6U), true }, + { TensorShape(5U, 4U, 3U, 4U, 5U, 1U), TensorShape(2U, 5U, 3U, 4U, 5U, 6U), false }, // no batch broadcasting + { TensorShape(5U, 4U, 3U, 4U, 9U, 6U), TensorShape(2U, 5U, 3U, 4U, 5U, 6U), false }, // mismatch in batch dimension + }; + + for(auto &tuple : shape_configurations) + { + const bool expected = std::get<2>(tuple); + + for(bool adj_lhs : + { + false + }) + { + for(bool adj_rhs : + { + true + }) + { + TensorShape lhs_shape = std::get<0>(tuple); + TensorShape rhs_shape = std::get<1>(tuple); + + if(adj_lhs) + { + permute(lhs_shape, PermutationVector(1U, 0U)); + } + + if(adj_rhs) + { + permute(rhs_shape, PermutationVector(1U, 0U)); + } + + const TensorInfo lhs_info = context.create_tensor_info(TensorInfo(lhs_shape, 1, DataType::F32)); + const TensorInfo rhs_info = context.create_tensor_info(TensorInfo(rhs_shape, 1, DataType::F32)); + + MatMulAttributes matmul_attr {}; + matmul_attr.adj_lhs(adj_lhs); + matmul_attr.adj_rhs(adj_rhs); + + GpuMatMulSettings matmul_settings {}; + matmul_settings.m0(1); + matmul_settings.n0(1); + matmul_settings.k0(1); + + Status status = GpuMatMul::validate_op(sketch, &lhs_info, &rhs_info, matmul_attr, matmul_settings); + ARM_COMPUTE_EXPECT(bool(status) == expected, framework::LogLevel::ERRORS); + } + } + } +} + + +TEST_CASE(ValidateDataTypes, framework::DatasetMode::ALL) +{ + // Configurations are assumed to be Nt/Nt, but will be transposed inside the test to test other configurations + using DataTypeConfigurationTuple = std::tuple; + const std::vector data_type_configurations = + { + { DataType::F32, DataType::F32, DataType::F32, true }, + { DataType::F16, DataType::F16, DataType::F16, true }, + { DataType::F16, DataType::F32, DataType::F32, false }, // no mixed precision + { DataType::F64, DataType::F64, DataType::F64, false }, // no double precision + { DataType::QASYMM8, DataType::QASYMM8, DataType::QASYMM8, false }, // no quantized types + { DataType::QASYMM8_SIGNED, DataType::QASYMM8_SIGNED, DataType::QASYMM8_SIGNED, false }, // no quantized types + { DataType::QSYMM8_PER_CHANNEL, DataType::QSYMM8_PER_CHANNEL, DataType::QSYMM8_PER_CHANNEL, false }, // no quantized types + { DataType::QASYMM16, DataType::QASYMM16, DataType::QASYMM16, false }, // no quantized types + { DataType::QSYMM16, DataType::QSYMM16, DataType::QSYMM16, false }, // no quantized types + { DataType::QSYMM8, DataType::QSYMM8, DataType::QSYMM8, false }, // no quantized types + { DataType::S64, DataType::S64, DataType::S64, false }, // no integral types + { DataType::S32, DataType::S32, DataType::S32, false }, // no integral types + { DataType::S16, DataType::S16, DataType::S16, false }, // no integral types + { DataType::S8, DataType::S8, DataType::S8, false }, // no integral types + { DataType::U64, DataType::U64, DataType::U64, false }, // no integral types + { DataType::U32, DataType::U32, DataType::U32, false }, // no integral types + { DataType::U16, DataType::U16, DataType::U16, false }, // no integral types + { DataType::U8, DataType::U8, DataType::U8, false }, // no integral types + }; + // Create a sketch + auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context(); + auto context = GpuWorkloadContext{ &cl_compile_ctx }; + GpuWorkloadSketch sketch{ &context }; + + const TensorShape shape = TensorShape(10U, 10U); + MatMulAttributes matmul_attr {}; + matmul_attr.adj_lhs(false); + matmul_attr.adj_rhs(false); + GpuMatMulSettings matmul_settings {}; + matmul_settings.m0(1); + matmul_settings.n0(1); + matmul_settings.k0(1); + + for(auto &tuple : data_type_configurations) + { + const bool expected = std::get<3>(tuple); + + const TensorInfo lhs_info = context.create_tensor_info(TensorInfo(shape, 1, std::get<0>(tuple))); + const TensorInfo rhs_info = context.create_tensor_info(TensorInfo(shape, 1, std::get<1>(tuple))); + + Status status = GpuMatMul::validate_op(sketch, &lhs_info, &rhs_info, matmul_attr, matmul_settings); + ARM_COMPUTE_EXPECT(bool(status) == expected, framework::LogLevel::ERRORS); + } +} + +TEST_SUITE_END() // Validate + +template +using DynamicFusionGpuMatmulFixture = DynamicFusionGpuMatMulValidationFixture; + +TEST_SUITE(Float) +TEST_SUITE(FP32) + +FIXTURE_DATA_TEST_CASE(RunTiny, DynamicFusionGpuMatmulFixture, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(combine(combine(datasets::TinyMatMulDataset(), + framework::dataset::make("TransposeA", { false })), + framework::dataset::make("TransposeB", { true })), + m0_values_precommit), + n0_values_precommit), + k0_values_precommit), + framework::dataset::make("ExportRhsToCLImage", { false })), + framework::dataset::make("DataType", DataType::F32))) +{ + // Validate output + validate(CLAccessor(_target), _reference, tolerance_f32, 0.f, abs_tolerance_f32); +} + +FIXTURE_DATA_TEST_CASE(RunSmall, DynamicFusionGpuMatmulFixture, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(combine(combine(datasets::SmallMatMulDataset(), + framework::dataset::make("TransposeA", { false })), + framework::dataset::make("TransposeB", { true })), + m0_values_precommit), + n0_values_precommit), + k0_values_precommit), + framework::dataset::make("ExportRhsToCLImage", { false })), + framework::dataset::make("DataType", DataType::F32))) +{ + // Validate output + validate(CLAccessor(_target), _reference, tolerance_f32, 0.f, abs_tolerance_f32); +} + +FIXTURE_DATA_TEST_CASE(RunLargeRhsTransposed, DynamicFusionGpuMatmulFixture, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(combine(combine(combine(datasets::LargeMatMulDataset(), + framework::dataset::make("TransposeA", { false })), + framework::dataset::make("TransposeB", { true })), + m0_values_nightly_lhs_nt), + n0_values_nightly_rhs_t), + k0_values_nightly_rhs_t), + framework::dataset::make("ExportRhsToCLImage", { false })), + framework::dataset::make("DataType", DataType::F32))) +{ + // Validate output + validate(CLAccessor(_target), _reference, tolerance_f32, 0.f, abs_tolerance_f32); +} + +// Running High Dimensional test is enough for FP32, because we're stressing the number of dimensions, not data type or M0/N0/K0 +FIXTURE_DATA_TEST_CASE(RunHighDimensional, DynamicFusionGpuMatmulFixture, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(combine(combine(datasets::HighDimensionalMatMulDataset(), + framework::dataset::make("TransposeA", { false })), + framework::dataset::make("TransposeB", { true })), + framework::dataset::make("M0", { 2 })), + framework::dataset::make("N0", { 2 })), + framework::dataset::make("K0", { 2 })), + framework::dataset::make("ExportRhsToCLImage", { false })), + framework::dataset::make("DataType", DataType::F32))) +{ + // Validate output + validate(CLAccessor(_target), _reference, tolerance_f32, 0.f, abs_tolerance_f32); +} +TEST_SUITE_END() // FP32 + +TEST_SUITE(FP16) + +FIXTURE_DATA_TEST_CASE(RunSmall, DynamicFusionGpuMatmulFixture, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(combine(combine(datasets::SmallMatMulDataset(), + framework::dataset::make("TransposeA", { false })), + framework::dataset::make("TransposeB", { true })), + m0_values_precommit), + n0_values_precommit), + k0_values_precommit), + framework::dataset::make("ExportRhsToCLImage", { false })), + framework::dataset::make("DataType", DataType::F16))) +{ + // Validate output + validate(CLAccessor(_target), _reference, tolerance_f16, 0.f, abs_tolerance_f16); +} + + +FIXTURE_DATA_TEST_CASE(RunLargeRhsTransposed, DynamicFusionGpuMatmulFixture, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(combine(combine(combine(datasets::LargeMatMulDataset(), + framework::dataset::make("TransposeA", { false })), + framework::dataset::make("TransposeB", { true })), + m0_values_nightly_lhs_nt), + n0_values_nightly_rhs_t), + k0_values_nightly_rhs_t), + framework::dataset::make("ExportRhsToCLImage", { false })), + framework::dataset::make("DataType", DataType::F16))) +{ + // Validate output + validate(CLAccessor(_target), _reference, tolerance_f16, 0.f, abs_tolerance_f16); +} + +TEST_SUITE_END() // FP16 + +TEST_SUITE_END() // Float +TEST_SUITE_END() // MatMul +TEST_SUITE_END() // DYNAMIC_FUSION +TEST_SUITE_END() // CL +} // namespace validation +} // namespace test +} // namespace arm_compute +#endif // ACL_INTERNAL_TEST_CKW_IN_DF -- cgit v1.2.1