From 1af5416917268692fcd4b34b1d7ffebd3a2aea8a Mon Sep 17 00:00:00 2001 From: SiCongLi Date: Wed, 6 Oct 2021 15:25:57 +0100 Subject: Add experimental PostOp interface to ClGemmMatrixMultiplyReshapedKernel Part 1 This interface supports the fusion of multiple elementwise operations Partially resolves: COMPMID-4435 Change-Id: If68dd7dd98dcf239fde7cb1f0a4a6d4d1e899a6f Signed-off-by: SiCongLi Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6483 Tested-by: Arm Jenkins Reviewed-by: Gian Marco Iodice Comments-Addressed: Arm Jenkins --- .../fp_post_ops_act_eltwise_op_act.h | 101 ++ .../act_eltwise_op_act/gemm_mm_reshaped.cl | 1404 ++++++++++++++++++++ .../fp_elementwise_op_helpers.h | 262 ++++ .../fp_mixed_precision_helpers.h | 113 ++ src/core/CL/cl_kernels/common/gemm.cl | 6 +- 5 files changed, 1885 insertions(+), 1 deletion(-) create mode 100644 src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h create mode 100644 src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl create mode 100644 src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h create mode 100644 src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h (limited to 'src/core/CL/cl_kernels/common') diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h new file mode 100644 index 0000000000..fc9704f13b --- /dev/null +++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h @@ -0,0 +1,101 @@ +/* + * Copyright (c) 2021 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "fp_mixed_precision_helpers.h" + +/** (EXPERIMENTAL_POST_OPS) Post Op expansions for the post op sequence: + * act (optional): POST_OP1_ACTIVATION_OPTIONAL + * eltwise_op : POST_OP2_ELTWISE_OP + * act (optional): POST_OP3_ACTIVATION_OPTIONAL + */ + +/** Post Op 1: Activation Block (Optional) + * @name POST_OP1_ACTIVATION_OPTIONAL + * Toggled by -DP1_ACTIVATION_TYPE + * params: same as those in @ref MIXED_PRECISION_ACTIVATION_BLOCK + * @{ + */ +#if defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL) +#define POST_OP1_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) \ + MIXED_PRECISION_ACTIVATION_BLOCK(N, P1_ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, P1_ACTIVATION_A_VAL, P1_ACTIVATION_B_VAL, DATA_TYPE_ACCUMULATOR); +#else // defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL) +#define POST_OP1_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) // noop +#endif // defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL) +/** @} */ // end of group POST_OP1_ACTIVATION_OPTIONAL + +/** Post Op 2: Eltwise Op Block + * Handles both broadcasting and non-broadcasting cases + * @name POST_OP2_ELTWISE_OP + * + * @param[in] P2_ELTWISE_ARG1_HEIGHT Height (number of rows) of the @ref ELTWISE_OPERAND_NAME tensor + * @param[in] P2_ELTWISE_ARG1_WIDTH Width (number of columns) of the @ref ELTWISE_OPERAND_NAME tensor + * @param[in] OP The elementwise post op + * @param[in] M0 The number of consecutive rows + * @param[in] N0 The number of consecutive columns + * @param[in] BASENAME The basename of the result variables + * @param[in] ELTWISE_OPERAND_NAME The basename of the other operand variables + * @param[in] DATA_TYPE Data type of the result variables + * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op + * @param[in] ZERO Zero vector for z offset + * @param[in] PARTIAL_LOAD_M0 The partial size in y, for partial blocks. Supported: [0, @p M0) + * @param[in] PARTIAL_LOAD_N0 The partial size in x, for partial blocks. Supported: [0, @p N0) + * @param[in] PARTIAL_COND_Y Condition on the y axis to perform the partial load Y. True to use PARTIAL_LOAD_M0 rather than M0. + * @param[in] PARTIAL_COND_X Condition on the x axis to perform the partial load X. True to use PARTIAL_LOAD_N0 rather than N0. + * @{ + */ +#if defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH) +#if P2_ELTWISE_ARG1_HEIGHT == 1 +#if P2_ELTWISE_ARG1_WIDTH == 1 // Case 1: Broadcasting in both X and Y; op2 arg tile shape[YxX] == [1x1] +#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \ + __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \ + VEC_DATA_TYPE(DATA_TYPE, 1) \ + ELTWISE_OPERAND_NAME##0 = VLOAD(1)(0, (__global DATA_TYPE *)ELTWISE_OPERAND_NAME##_addr); \ + MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, 1, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp); +#else // P2_ELTWISE_ARG1_WIDTH == 1; Case 2: Broadcasting in only Y; op2 arg tile shape[YxX] == [1xN0] +#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \ + __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \ + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, ELTWISE_OPERAND_NAME, ELTWISE_OPERAND_NAME##_addr, 0, ELTWISE_OPERAND_NAME##_stride_y, ZERO, 1, PARTIAL_LOAD_N0, false, PARTIAL_COND_X); \ + MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp); +#endif // P2_ELTWISE_ARG1_WIDTH == 1 +#else // P2_ELTWISE_ARG1_HEIGHT == 1; Case 3: No broadcasting; op2 arg tile shape[YxX] == [M0xN0] +#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \ + __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * ELTWISE_OPERAND_NAME##_stride_y) + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \ + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, ELTWISE_OPERAND_NAME, ELTWISE_OPERAND_NAME##_addr, 0, ELTWISE_OPERAND_NAME##_stride_y, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X); \ + MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp); +#endif // P2_ELTWISE_ARG1_HEIGHT == 1 +#endif // defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH) +/** @} */ // end of group POST_OP2_ELTWISE_OP + +/** Post Op 3: Activation Block (Optional) + * @name POST_OP3_ACTIVATION_OPTIONAL + * Toggled by -DP3_ACTIVATION_TYPE + * params: same as those in @ref MIXED_PRECISION_ACTIVATION_BLOCK + * @{ + */ +#if defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL) +#define POST_OP3_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) \ + MIXED_PRECISION_ACTIVATION_BLOCK(N, P3_ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, P3_ACTIVATION_A_VAL, P3_ACTIVATION_B_VAL, DATA_TYPE_ACCUMULATOR); +#else // defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL) +#define POST_OP3_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) // noop +#endif // defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL) +/** @} */ // end of group POST_OP3_ACTIVATION_OPTIONAL diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl new file mode 100644 index 0000000000..9404c5e6db --- /dev/null +++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl @@ -0,0 +1,1404 @@ +/* + * Copyright (c) 2021 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "fp_post_ops_act_eltwise_op_act.h" +#include "gemm_helpers.h" +#include "repeat.h" + +/** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped kernel */ + +#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N) +#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH) + +#if defined(MIXED_PRECISION) +#if K0 == 2 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c += a.s0 * b.s0; \ + c += a.s1 * b.s1; \ + }) +#elif K0 == 3 // K0 == 3 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c += a.s0 * b.s0; \ + c += a.s1 * b.s1; \ + c += a.s2 * b.s2; \ + }) +#elif K0 == 4 // K0 == 4 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c += a.s0 * b.s0; \ + c += a.s1 * b.s1; \ + c += a.s2 * b.s2; \ + c += a.s3 * b.s3; \ + }) +#elif K0 == 8 // K0 == 8 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c += a.s0 * b.s0; \ + c += a.s1 * b.s1; \ + c += a.s2 * b.s2; \ + c += a.s3 * b.s3; \ + c += a.s4 * b.s4; \ + c += a.s5 * b.s5; \ + c += a.s6 * b.s6; \ + c += a.s7 * b.s7; \ + }) +#elif K0 == 16 // K0 == 16 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c += a.s0 * b.s0; \ + c += a.s1 * b.s1; \ + c += a.s2 * b.s2; \ + c += a.s3 * b.s3; \ + c += a.s4 * b.s4; \ + c += a.s5 * b.s5; \ + c += a.s6 * b.s6; \ + c += a.s7 * b.s7; \ + c += a.s8 * b.s8; \ + c += a.s9 * b.s9; \ + c += a.sA * b.sA; \ + c += a.sB * b.sB; \ + c += a.sC * b.sC; \ + c += a.sD * b.sD; \ + c += a.sE * b.sE; \ + c += a.sF * b.sF; \ + }) +#else // K0 not supported +#error "K0 value not supported" +#endif // K0 conditions +#else // defined(MIXED_PRECISION) +#if K0 == 2 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c = fma(a.s0, b.s0, c); \ + c = fma(a.s1, b.s1, c); \ + }) +#elif K0 == 3 // K0 == 3 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c = fma(a.s0, b.s0, c); \ + c = fma(a.s1, b.s1, c); \ + c = fma(a.s2, b.s2, c); \ + }) +#elif K0 == 4 // K0 == 4 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c = fma(a.s0, b.s0, c); \ + c = fma(a.s1, b.s1, c); \ + c = fma(a.s2, b.s2, c); \ + c = fma(a.s3, b.s3, c); \ + }) +#elif K0 == 8 // K0 == 8 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c = fma(a.s0, b.s0, c); \ + c = fma(a.s1, b.s1, c); \ + c = fma(a.s2, b.s2, c); \ + c = fma(a.s3, b.s3, c); \ + c = fma(a.s4, b.s4, c); \ + c = fma(a.s5, b.s5, c); \ + c = fma(a.s6, b.s6, c); \ + c = fma(a.s7, b.s7, c); \ + }) +#elif K0 == 16 // K0 == 16 +#define ARM_DOT_K0(a, b, c) \ + ({ \ + c = fma(a.s0, b.s0, c); \ + c = fma(a.s1, b.s1, c); \ + c = fma(a.s2, b.s2, c); \ + c = fma(a.s3, b.s3, c); \ + c = fma(a.s4, b.s4, c); \ + c = fma(a.s5, b.s5, c); \ + c = fma(a.s6, b.s6, c); \ + c = fma(a.s7, b.s7, c); \ + c = fma(a.s8, b.s8, c); \ + c = fma(a.s9, b.s9, c); \ + c = fma(a.sA, b.sA, c); \ + c = fma(a.sB, b.sB, c); \ + c = fma(a.sC, b.sC, c); \ + c = fma(a.sD, b.sD, c); \ + c = fma(a.sE, b.sE, c); \ + c = fma(a.sF, b.sF, c); \ + }) +#else // K0 not supported +#error "K0 value not supported" +#endif // K0 conditions +#endif // defined(MIXED_PRECISION) + +#if defined(ARM_DOT_K0XN0) +#undef ARM_DOT_K0XN0 +#endif // defined(ARM_DOT_K0XN0) + +#if N0 == 2 +#define ARM_DOT_K0XN0(a, b, c) \ + ({ \ + ARM_DOT_K0((a), (b##0), (c.s0)); \ + ARM_DOT_K0((a), (b##1), (c.s1)); \ + }) +#elif N0 == 3 // N0 == 3 +#define ARM_DOT_K0XN0(a, b, c) \ + ({ \ + ARM_DOT_K0((a), (b##0), (c.s0)); \ + ARM_DOT_K0((a), (b##1), (c.s1)); \ + ARM_DOT_K0((a), (b##2), (c.s2)); \ + }) +#elif N0 == 4 // N0 == 4 +#define ARM_DOT_K0XN0(a, b, c) \ + ({ \ + ARM_DOT_K0((a), (b##0), (c.s0)); \ + ARM_DOT_K0((a), (b##1), (c.s1)); \ + ARM_DOT_K0((a), (b##2), (c.s2)); \ + ARM_DOT_K0((a), (b##3), (c.s3)); \ + }) +#elif N0 == 8 // N0 == 8 +#define ARM_DOT_K0XN0(a, b, c) \ + ({ \ + ARM_DOT_K0((a), (b##0), (c.s0)); \ + ARM_DOT_K0((a), (b##1), (c.s1)); \ + ARM_DOT_K0((a), (b##2), (c.s2)); \ + ARM_DOT_K0((a), (b##3), (c.s3)); \ + ARM_DOT_K0((a), (b##4), (c.s4)); \ + ARM_DOT_K0((a), (b##5), (c.s5)); \ + ARM_DOT_K0((a), (b##6), (c.s6)); \ + ARM_DOT_K0((a), (b##7), (c.s7)); \ + }) +#elif N0 == 16 // N0 == 16 +#define ARM_DOT_K0XN0(a, b, c) \ + ({ \ + ARM_DOT_K0((a), (b##0), (c.s0)); \ + ARM_DOT_K0((a), (b##1), (c.s1)); \ + ARM_DOT_K0((a), (b##2), (c.s2)); \ + ARM_DOT_K0((a), (b##3), (c.s3)); \ + ARM_DOT_K0((a), (b##4), (c.s4)); \ + ARM_DOT_K0((a), (b##5), (c.s5)); \ + ARM_DOT_K0((a), (b##6), (c.s6)); \ + ARM_DOT_K0((a), (b##7), (c.s7)); \ + ARM_DOT_K0((a), (b##8), (c.s8)); \ + ARM_DOT_K0((a), (b##9), (c.s9)); \ + ARM_DOT_K0((a), (b##A), (c.sA)); \ + ARM_DOT_K0((a), (b##B), (c.sB)); \ + ARM_DOT_K0((a), (b##C), (c.sC)); \ + ARM_DOT_K0((a), (b##D), (c.sD)); \ + ARM_DOT_K0((a), (b##E), (c.sE)); \ + ARM_DOT_K0((a), (b##F), (c.sF)); \ + }) +#else // N0 not supported +#error "N0 value not supported" +#endif // N0 conditions + +/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: + * Post op 1: activation (optional) + * Post op 2: elementwise op + * Post op 3: activation (optional) + * + * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform + * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * + * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_nt_rhs_t, with these additions: + * + * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 + * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) + * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) + * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) + */ +__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), + IMAGE_DECLARATION(rhs), +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + // Post-Op arguments + IMAGE_DECLARATION(eltwise_operand), + uint k, + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z, + uint eltwise_operand_stride_z +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + ) +{ + // Block size +#define LHS_BLOCK_SIZE ((K0) * (M0)) + +#if defined(LHS_INTERLEAVE) +#define LHS_OFFSET_X (K0) +#define LHS_STEP_X ((K0) * (V0)) +#define LHS_STEP_LOOP (1) +#else // defined(INTERLEAVE) +#define LHS_OFFSET_X (LHS_BLOCK_SIZE) +#define LHS_STEP_X (K0) +#define LHS_STEP_LOOP (V0) +#endif // defined(INTERLEAVE) + + // Block size +#define RHS_BLOCK_SIZE ((K0) * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (K0) +#define RHS_STEP_X ((K0) * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (K0) +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + +#if defined(DUMMY_WORK_ITEMS) + if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y + + (get_global_id(2) * lhs_stride_z); + + // Compute RHS matrix address + __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(0) / (uint)H0) * rhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z; +#else // defined(MATRIX_B_DEPTH) + rhs_addr += get_global_id(2) * rhs_stride_z; +#endif // defined(MATRIX_B_DEPTH) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0; + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); + + for(int i = 0; i < k; i += K0) + { + // Supported cases (M0, K0): + // 1,2 - 1,3 - 1,4 - 1,8 - 1,16 + // 2,2 - 2,3 - 2,4 - 2,8 - 2,16 + // 3,2 - 3,3 - 3,4 - 3,8 - 3,16 + // 4,2 - 4,3 - 4,4 - 4,8 - 4,16 + // 5,2 - 5,3 - 5,4 - 5,8 - 5,16 + // 6,2 - 6,3 - 6,4 - 6,8 - 6,16 + // 7,2 - 7,3 - 7,4 - 7,8 - 7,16 + // 8,2 - 8,3 - 8,4 - 8,8 - 8,16 + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs); + + // Load values from RHS matrix + LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_addr, 0, RHS_STEP_X * sizeof(DATA_TYPE), zero); + + // Accumulate + ARM_DOT_K0XN0(a0, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(a1, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(a2, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(a3, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(a4, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(a5, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(a6, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(a7, b, c7); +#endif // M0 > 7 + + lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE); + rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE); + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); + + const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); + const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); + +#if defined(REINTERPRET_OUTPUT_AS_3D) + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1) * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += get_global_id(2) * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id( + 2) * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + + // c = act(c) + POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) + POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + // c = act(c) + POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + + // Store output block + MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp); + +#undef LHS_BLOCK_SIZE +#undef LHS_OFFSET_X +#undef LHS_STEP_X +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef LHS_STEP_LOOP +#undef RHS_STEP_LOOP +} + +#if defined(OPENCL_IMAGE_SUPPORT) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object. + * Post op 1: activation (optional) + * Post op 2: elementwise op + * Post op 3: activation (optional) + * + * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform + * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * + * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_nt_rhs_t_texture, with these additions: + * + * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 + * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) + * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) + * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) + */ +__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), + __read_only image2d_t rhs_img, +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + // Post-Op arguments + IMAGE_DECLARATION(eltwise_operand), + uint k, + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z, + uint eltwise_operand_stride_z +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + ) +{ + // Pixel unit +#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0) + + // Block size +#define LHS_BLOCK_SIZE ((K0) * (M0)) + +#if defined(LHS_INTERLEAVE) +#define LHS_OFFSET_X (K0) +#define LHS_STEP_X ((K0) * (V0)) +#define LHS_STEP_LOOP (1) +#else // defined(INTERLEAVE) +#define LHS_OFFSET_X (LHS_BLOCK_SIZE) +#define LHS_STEP_X (K0) +#define LHS_STEP_LOOP (V0) +#endif // defined(INTERLEAVE) + + // Block size +#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (PIXEL_UNIT) +#define RHS_STEP_X (PIXEL_UNIT * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X PIXEL_UNIT +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + +#if defined(DUMMY_WORK_ITEMS) + if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y + + (get_global_id(2) * lhs_stride_z); + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH); +#else // defined(MATRIX_B_DEPTH) + const uint z_rhs = get_global_id(2); +#endif // defined(MATRIX_B_DEPTH) + + // Compute RHS matrix coordinates + uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X; + const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT; + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0; + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); + + for(int i = 0; i < K; i += K0) + { + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs); + + // Load values from RHS matrix stored in a cl_image + REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0); + LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0); + + // Accumulate + ARM_DOT_K0XN0(a0, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(a1, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(a2, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(a3, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(a4, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(a5, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(a6, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(a7, b, c7); +#endif // M0 > 7 + + lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE); + + x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP; + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); + + const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); + const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); + +#if defined(REINTERPRET_OUTPUT_AS_3D) + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1) * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += get_global_id(2) * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id( + 2) * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + + // c = act(c) + POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) + POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + // c = act(c) + POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + + // Store output block + MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp); + +#undef LHS_BLOCK_SIZE +#undef LHS_OFFSET_X +#undef LHS_STEP_X +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef PIXEL_UNIT +#undef LHS_STEP_LOOP +#undef RHS_STEP_LOOP +} +#endif // defined(OPENCL_IMAGE_SUPPORT) + +#if defined(LHS_TRANSPOSE) + +#define VTYPE(TYPE, SIZE) VEC_DATA_TYPE(TYPE, SIZE) + +#if defined(MIXED_PRECISION) + +#if(GPU_ARCH == GPU_ARCH_MIDGARD) +#define ARM_VFMA(N0, a, b, c) c += (CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))) * (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))); +#else // GPU_ARCH == GPU_ARCH_MIDGARD +#define ARM_VFMA(N0, a, b, c) c = fma((CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (c)); +#endif // GPU_ARCH == GPU_ARCH_MIDGARD + +#else // defined(MIXED_PRECISION + +#if(GPU_ARCH == GPU_ARCH_MIDGARD) +#define ARM_VFMA(N0, a, b, c) c += (a) * (b); +#else // GPU_ARCH == GPU_ARCH_MIDGARD +#define ARM_VFMA(N0, a, b, c) c = fma((a), (b), (c)); +#endif // GPU_ARCH == GPU_ARCH_MIDGARD + +#endif // defined(MIXED_PRECISION) + +#define ARM_VVM_T_NT_1xN0x1(N0, TYPE, a, b, C) \ + ({ \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a), b, (C##0)); \ + }) +#define ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C) \ + ({ \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s0), b, (C##0)); \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s1), b, (C##1)); \ + }) +#define ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C) \ + ({ \ + ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C); \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s2), b, (C##2)); \ + }) +#define ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C) \ + ({ \ + ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C); \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s3), b, (C##3)); \ + }) +#define ARM_VVM_T_NT_8xN0x1(N0, TYPE, a, b, C) \ + ({ \ + ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C); \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s4), b, (C##4)); \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s5), b, (C##5)); \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s6), b, (C##6)); \ + ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s7), b, (C##7)); \ + }) + +// Factory macro for the column-vector (transposed) by row-vector (not transposed) multiplication. K0 = 1 +// a is the column-vector (transposed) +// b is the row-vector (not transposed) +// C is the output matrix +// Lower case is a vector (a, b) +// Upper case is a matrix (C) +#define ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, a, b, C) ARM_VVM_T_NT_##M0##xN0x1(N0, TYPE, a, b, C) + +#define ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C) \ + ({ \ + ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##0), (B##0), C); \ + }) +#define ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C) \ + ({ \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C); \ + ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##1), (B##1), C); \ + }) +#define ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C) \ + ({ \ + ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C); \ + ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##2), (B##2), C); \ + }) +#define ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C) \ + ({ \ + ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C); \ + ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##3), (B##3), C); \ + }) +#define ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C) \ + ({ \ + ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C); \ + ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##4), (B##4), C); \ + ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##5), (B##5), C); \ + ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##6), (B##6), C); \ + ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##7), (B##7), C); \ + }) +#define ARM_MM_T_NT_M0xN0x16(M0, N0, TYPE, A, B, C) \ + ({ \ + ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C); \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##8), (B##8), C); \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##9), (B##9), C); \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##A), (B##A), C); \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##B), (B##B), C); \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##C), (B##C), C); \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##D), (B##D), C); \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##E), (B##E), C); \ + ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##F), (B##F), C); \ + }) + +// Factory macro for the matrix (transposed) by matrix (not transposed) multiplication. +// The dimensions for this matrix multiplications are defined through M0, N0 and K0 +// The dimensions supported are: +// M0: 1, 2, 3, 4, 8 +// N0: 1, 2, 3, 4, 8, 16 +// K0: 1, 2, 3, 4, 8, 16 +// This macro calls the vector-by-matrix macro K0 times +// A, B and C are matrices +#define ARM_MM_T_NT(M0, N0, K0, TYPE, A, B, C) \ + CONCAT(ARM_MM_T_NT_M0xN0x, K0) \ + (M0, N0, TYPE, A, B, C) + +/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: + * Post op 1: activation (optional) + * Post op 2: elementwise op + * Post op 3: activation (optional) + * + * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform + * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * + * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_t_rhs_nt, with these additions: + * + * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 + * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) + * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) + * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) + */ +__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), + IMAGE_DECLARATION(rhs), +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + // Post-Op arguments + IMAGE_DECLARATION(eltwise_operand), + uint k, + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z, + uint eltwise_operand_stride_z +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + ) +{ + // Block size +#define LHS_BLOCK_SIZE ((K0) * (M0)) + +#if defined(LHS_INTERLEAVE) +#define LHS_OFFSET_X (M0) +#define LHS_STEP_X ((M0) * (V0)) +#define LHS_STEP_LOOP (1) +#else // defined(INTERLEAVE) +#define LHS_OFFSET_X (LHS_BLOCK_SIZE) +#define LHS_STEP_X (M0) +#define LHS_STEP_LOOP (V0) +#endif // defined(INTERLEAVE) + + // Block size +#define RHS_BLOCK_SIZE ((K0) * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (N0) +#define RHS_STEP_X ((N0) * (H0)) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (N0) +#endif // defined(RHS_INTERLEAVE) + + const uint x = get_global_id(0); + const uint y = get_global_id(1); + const uint z = get_global_id(2); + + const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); + const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z); + + // Compute RHS matrix address + __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + rhs_addr += (z % MATRIX_B_DEPTH) * rhs_stride_z; +#else // defined(MATRIX_B_DEPTH) + rhs_addr += z * rhs_stride_z; +#endif // defined(MATRIX_B_DEPTH) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0); + + __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr); + __global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr); + + for(int i = 0; i < k; i += K0) + { + VEC_DATA_TYPE(DATA_TYPE, M0) + a0; + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + +#if K0 > 1 + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; +#endif // K0 > 1 + +#if K0 > 2 + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; +#endif // K0 > 2 + +#if K0 > 3 + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; +#endif // K0 > 3 + +#if K0 > 4 + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; +#endif // K0 > 4 + +#if K0 > 8 + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = VLOAD(N0)(0, rhs); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + rhs += RHS_STEP_X; +#endif // K0 > 8 + +#ifndef LHS_INTERLEAVE + lhs += (M0 * K0 * (V0 - 1)); +#endif // LHS_INTERLEAVE + +#ifndef RHS_INTERLEAVE + rhs += (N0 * K0 * (H0 - 1)); +#endif // RHS_INTERLEAVE + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); + +#if defined(REINTERPRET_OUTPUT_AS_3D) + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, y * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id( + 2) * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + + // c = act(c) + POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) + POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + // c = act(c) + POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + + // Store output block + MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp); + +#undef LHS_BLOCK_SIZE +#undef LHS_OFFSET_X +#undef LHS_STEP_X +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +} +#if defined(OPENCL_IMAGE_SUPPORT) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object. + * Post op 1: activation (optional) + * Post op 2: elementwise op + * Post op 3: activation (optional) + * + * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform + * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * + * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_t_rhs_nt_texture, with these additions: + * + * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 + * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) + * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) + * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) + */ +__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), + __read_only image2d_t rhs_img, +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + // Post-Op arguments + IMAGE_DECLARATION(eltwise_operand), + uint k, + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z, + uint eltwise_operand_stride_z +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + ) +{ + // Pixel unit +#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0) + + // Block size +#define LHS_BLOCK_SIZE ((K0) * (M0)) + +#if defined(LHS_INTERLEAVE) +#define LHS_OFFSET_X (M0) +#define LHS_STEP_X ((M0) * (V0)) +#define LHS_STEP_LOOP (1) +#else // defined(INTERLEAVE) +#define LHS_OFFSET_X (LHS_BLOCK_SIZE) +#define LHS_STEP_X (M0) +#define LHS_STEP_LOOP (V0) +#endif // defined(INTERLEAVE) + + // Block size +#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (PIXEL_UNIT) +#define RHS_STEP_X ((PIXEL_UNIT) * (H0)) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (PIXEL_UNIT) +#endif // defined(RHS_INTERLEAVE) + + const uint x = get_global_id(0); + const uint y = get_global_id(1); + const uint z = get_global_id(2); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z); + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + const uint z_rhs = (z % MATRIX_B_DEPTH); +#else // defined(MATRIX_B_DEPTH) + const uint z_rhs = z; +#endif // defined(MATRIX_B_DEPTH) + + // Compute RHS matrix coordinates + uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X; + const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT; + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0); + + __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr); + + for(int i = 0; i < K; i += K0) + { + VEC_DATA_TYPE(DATA_TYPE, M0) + a0; + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + +#if K0 > 1 + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; +#endif // K0 > 1 + +#if K0 > 2 + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; +#endif // K0 > 2 + +#if K0 > 3 + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; +#endif // K0 > 3 + +#if K0 > 4 + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; +#endif // K0 > 4 + +#if K0 > 8 + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; + + a0 = VLOAD(M0)(0, lhs); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs)); + + ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); + + lhs += LHS_STEP_X; +#endif // K0 > 8 + +#ifndef LHS_INTERLEAVE + lhs += (M0 * K0 * (V0 - 1)); +#endif // LHS_INTERLEAVE + + x_rhs += K0 * RHS_STEP_X; +#ifndef RHS_INTERLEAVE + x_rhs += (PIXEL_UNIT * K0 * (H0 - 1)); +#endif // RHS_INTERLEAVE + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); + + const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); + const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); + +#if defined(REINTERPRET_OUTPUT_AS_3D) + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, y * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + + // c = act(c) + POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) + POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + // c = act(c) + POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + + // Store output block + MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp); + +#undef LHS_BLOCK_SIZE +#undef LHS_OFFSET_X +#undef LHS_STEP_X +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef PIXEL_UNIT +#undef LHS_STEP_LOOP +#undef RHS_STEP_LOOP +} +#endif // defined(OPENCL_IMAGE_SUPPORT) + +#endif // defined(LHS_TRANSPOSE) +#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH) +#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N) \ No newline at end of file diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h new file mode 100644 index 0000000000..9ddf51a13c --- /dev/null +++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h @@ -0,0 +1,262 @@ +/* + * Copyright (c) 2021 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "helpers.h" + +/** (EXPERIMENTAL_POST_OPS) Macros for (binary) elementwise operations */ + +/** List of (binary) elementwise operators, accounting for the argument position of argument X + * @note X_Pos denotes the position of argument X. e.g. X_POS_0 means X is in the first place whereas X_POS_1 means X is in the second place + * @name elementwise_post_ops + * @{ + */ +#if defined(N0) && !defined(VEC_SIZE) +#define VEC_SIZE N0 +#endif // defined(N0) && !defined(VEC_SIZE) + +#if defined(VEC_SIZE) && defined(DATA_TYPE) + +#define ADD_X_POS_0(x, y) (x) + (y) +#define SUB_X_POS_0(x, y) (x) - (y) +#define MAX_X_POS_0(x, y) max(x, y) +#define MIN_X_POS_0(x, y) min(x, y) +#define SQUARED_DIFF_X_POS_0(x, y) (x - y) * (x - y) +#define POWER_X_POS_0(x, y) pow(x, y) +#if VEC_SIZE == 1 +#define PRELU_X_POS_0(x, y) (x > 0 ? x : x * y) +#else // VEC_SIZE == 1 +#define PRELU_X_POS_0(x, y) (select(y * x, x, CONVERT((x > (DATA_TYPE)0), SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)))) +#endif // VEC_SIZE == 1 +#define DIV_X_POS_0(x, y) (x / y) +#define AND_X_POS_0(x, y) (CONVERT((x && y), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)) & ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))1)) +#define OR_X_POS_0(x, y) (CONVERT((x || y), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)) & ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))1)) + +#define ADD_X_POS_1(x, y) ADD_X_POS_0(x, y) +#define SUB_X_POS_1(x, y) (y) - (x) +#define MAX_X_POS_1(x, y) MAX_X_POS_0(x, y) +#define MIN_X_POS_1(x, y) MIN_X_POS_0(x, y) +#define SQUARED_DIFF_X_POS_1(x, y) SQUARED_DIFF_X_POS_0(x, y) +#define POWER_X_POS_1(x, y) pow(y, x) +#if VEC_SIZE == 1 +#define PRELU_X_POS_1(x, y) (y > 0 ? y : y * x) +#else // VEC_SIZE == 1 +#define PRELU_X_POS_1(x, y) (select(x * y, y, CONVERT((y > (DATA_TYPE)0), SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)))) +#endif // VEC_SIZE == 1 +#define DIV_X_POS_1(x, y) (y / x) +#define AND_X_POS_1(x, y) AND_X_POS_0(x, y) +#define OR_X_POS_1(x, y) OR_X_POS_0(x, y) + +// By default use the order of the arguments as they are passed in, ie. _X_POS_0 +#define ADD(x, y) ADD_X_POS_0(x, y) +#define SUB(x, y) SUB_X_POS_0(x, y) +#define MAX(x, y) MAX_X_POS_0(x, y) +#define MIN(x, y) MIN_X_POS_0(x, y) +#define SQUARED_DIFF(x, y) SQUARED_DIFF_X_POS_0(x, y) +#define POWER(x, y) POWER_X_POS_0(x, y) +#define PRELU(x, y) PRELU_X_POS_0(x, y) +#define DIV(x, y) DIV_X_POS_0(x, y) +#define AND(x, y) AND_X_POS_0(x, y) +#define OR(x, y) OR_X_POS_0(x, y) + +#endif // defined(VEC_SIZE) && defined(DATA_TYPE) +/** @} */ // end of group elementwise_post_ops + +/** Performs OPERAND1 = OP(OPERAND1, OPERAND2) + * @name ELTWISE_OP_ROW_n + * + * @param[in] OP The elementwise post op + * @param[in, out] OPERAND1 The basename of the destination and operand 1 variables + * @param[in] OPERAND2 The basename of the operand 2 variables + * @{ + */ +#define ELTWISE_OP_ROW_1(OP, OPERAND1, OPERAND2) \ + OPERAND1##0 = OP(OPERAND1##0, OPERAND2##0); + +#define ELTWISE_OP_ROW_2(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_1(OP, OPERAND1, OPERAND2) \ + OPERAND1##1 = OP(OPERAND1##1, OPERAND2##1); + +#define ELTWISE_OP_ROW_3(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_2(OP, OPERAND1, OPERAND2) \ + OPERAND1##2 = OP(OPERAND1##2, OPERAND2##2); + +#define ELTWISE_OP_ROW_4(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_3(OP, OPERAND1, OPERAND2) \ + OPERAND1##3 = OP(OPERAND1##3, OPERAND2##3); + +#define ELTWISE_OP_ROW_5(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_4(OP, OPERAND1, OPERAND2) \ + OPERAND1##4 = OP(OPERAND1##4, OPERAND2##4); + +#define ELTWISE_OP_ROW_6(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_5(OP, OPERAND1, OPERAND2) \ + OPERAND1##5 = OP(OPERAND1##5, OPERAND2##5); + +#define ELTWISE_OP_ROW_7(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_6(OP, OPERAND1, OPERAND2) \ + OPERAND1##6 = OP(OPERAND1##6, OPERAND2##6); + +#define ELTWISE_OP_ROW_8(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_7(OP, OPERAND1, OPERAND2) \ + OPERAND1##7 = OP(OPERAND1##7, OPERAND2##7); + +#define ELTWISE_OP_ROW_9(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_8(OP, OPERAND1, OPERAND2) \ + OPERAND1##8 = OP(OPERAND1##8, OPERAND2##8); + +#define ELTWISE_OP_ROW_10(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_9(OP, OPERAND1, OPERAND2) \ + OPERAND1##9 = OP(OPERAND1##9, OPERAND2##9); + +#define ELTWISE_OP_ROW_11(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_10(OP, OPERAND1, OPERAND2) \ + OPERAND1##A = OP(OPERAND1##A, OPERAND2##A); + +#define ELTWISE_OP_ROW_12(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_11(OP, OPERAND1, OPERAND2) \ + OPERAND1##B = OP(OPERAND1##B, OPERAND2##B); + +#define ELTWISE_OP_ROW_13(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_12(OP, OPERAND1, OPERAND2) \ + OPERAND1##C = OP(OPERAND1##C, OPERAND2##C); + +#define ELTWISE_OP_ROW_14(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_13(OP, OPERAND1, OPERAND2) \ + OPERAND1##D = OP(OPERAND1##D, OPERAND2##D); + +#define ELTWISE_OP_ROW_15(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_14(OP, OPERAND1, OPERAND2) \ + OPERAND1##E = OP(OPERAND1##E, OPERAND2##E); + +#define ELTWISE_OP_ROW_16(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_15(OP, OPERAND1, OPERAND2) \ + OPERAND1##F = OP(OPERAND1##F, OPERAND2##F); + +/** @} */ // end of group ELTWISE_OP_ROW_n + +/** Performs OPERAND1 = OP(OPERAND1, OPERAND2) + * @name ELTWISE_OP_BLOCK + * + * Supported cases are N=1,2,3,...,16 + * + * @param[in] OP The elementwise post op + * @param[in] N The number of vectors in the block + * @param[in] OPERAND1 The basename of the destination and operand 1 variables + * @param[in] OPERAND2 The basename of the operand 2 variables + * @{ + */ +#define ELTWISE_OP_BLOCK_STR(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_ROW_##N(OP, OPERAND1, OPERAND2) +#define ELTWISE_OP_BLOCK(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_BLOCK_STR(OP, N, OPERAND1, OPERAND2) +/** @} */ // end of group ELTWISE_OP_BLOCK + +/** Performs OPERAND1 = OP(OPERAND1, OPERAND2) with broadcasting + * @name ELTWISE_OP_ROW_BROADCAST_n + * + * @param[in] OP The elementwise post op + * @param[in, out] OPERAND1 The basename of the destination and operand 1 variables + * @param[in] OPERAND2 The basename of the broadcast operand 2 variables + * @{ + */ +#define ELTWISE_OP_ROW_BROADCAST_1(OP, OPERAND1, OPERAND2) \ + OPERAND1##0 = OP(OPERAND1##0, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_2(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_1(OP, OPERAND1, OPERAND2) \ + OPERAND1##1 = OP(OPERAND1##1, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_3(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_2(OP, OPERAND1, OPERAND2) \ + OPERAND1##2 = OP(OPERAND1##2, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_4(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_3(OP, OPERAND1, OPERAND2) \ + OPERAND1##3 = OP(OPERAND1##3, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_5(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_4(OP, OPERAND1, OPERAND2) \ + OPERAND1##4 = OP(OPERAND1##4, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_6(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_5(OP, OPERAND1, OPERAND2) \ + OPERAND1##5 = OP(OPERAND1##5, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_7(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_6(OP, OPERAND1, OPERAND2) \ + OPERAND1##6 = OP(OPERAND1##6, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_8(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_7(OP, OPERAND1, OPERAND2) \ + OPERAND1##7 = OP(OPERAND1##7, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_9(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_8(OP, OPERAND1, OPERAND2) \ + OPERAND1##8 = OP(OPERAND1##8, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_10(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_9(OP, OPERAND1, OPERAND2) \ + OPERAND1##9 = OP(OPERAND1##9, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_11(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_10(OP, OPERAND1, OPERAND2) \ + OPERAND1##A = OP(OPERAND1##A, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_12(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_11(OP, OPERAND1, OPERAND2) \ + OPERAND1##B = OP(OPERAND1##B, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_13(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_12(OP, OPERAND1, OPERAND2) \ + OPERAND1##C = OP(OPERAND1##C, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_14(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_13(OP, OPERAND1, OPERAND2) \ + OPERAND1##D = OP(OPERAND1##D, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_15(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_14(OP, OPERAND1, OPERAND2) \ + OPERAND1##E = OP(OPERAND1##E, OPERAND2); + +#define ELTWISE_OP_ROW_BROADCAST_16(OP, OPERAND1, OPERAND2) \ + ELTWISE_OP_ROW_BROADCAST_15(OP, OPERAND1, OPERAND2) \ + OPERAND1##F = OP(OPERAND1##F, OPERAND2); + +/** @} */ // end of group ELTWISE_OP_ROW_BROADCAST_n + +/** Performs OPERAND1 = OP(OPERAND1, OPERAND2) with broadcasting + * @name ELTWISE_OP_BLOCK_BROADCAST + * @note Only support: + * case 1 broadcast in Y dimension : Operand1 [YxX] + Operand2 [1xX]; + * case 2 broadcast in both Y and X dimensions : Operand1 [YxX] + Operand2 [1x1] (scalar); + * Does NOT support broad cast in X dimension: Operand1 [YxX] + Operand2 [Yx1]; + * + * Supported cases are N=1,2,3,...,16 + * + * @param[in] OP The elementwise post op + * @param[in] N The number of vectors in the block + * @param[in] OPERAND1 The basename of the destination and operand 1 variables + * @param[in] OPERAND2 The basename of the operand 2 variables + * @{ + */ +#define ELTWISE_OP_BLOCK_BROADCAST_STR(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_ROW_BROADCAST_##N(OP, OPERAND1, OPERAND2) +#define ELTWISE_OP_BLOCK_BROADCAST(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_BLOCK_BROADCAST_STR(OP, N, OPERAND1, OPERAND2) +/** @} */ // end of group ELTWISE_OP_BLOCK_BROADCAST \ No newline at end of file diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h new file mode 100644 index 0000000000..e8df121142 --- /dev/null +++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h @@ -0,0 +1,113 @@ +/* + * Copyright (c) 2021 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "fp_elementwise_op_helpers.h" +#include "gemm_helpers.h" +#include "load_store_utility.h" + +/** (EXPERIMENTAL_POST_OPS) Convenience macros for automatically handling mixed precision (fp16 and fp32) operations + * -DMIXED_PRECISION toggles mixed precision mode + */ + +/** Mixed-Precision-Aware Activation Block + * @name MIXED_PRECISION_ACTIVATION_BLOCK + * params N ... B_VAL: same as those in @ref ACTIVATION_BLOCK + * + * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op + * @{ + */ +#if defined(MIXED_PRECISION) +#define MIXED_PRECISION_ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL, DATA_TYPE_ACCUMULATOR) \ + ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME, A_VAL, B_VAL); +#else // defined(MIXED_PRECISION) +#define MIXED_PRECISION_ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL, DATA_TYPE_ACCUMULATOR) \ + ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL); +#endif // defined(MIXED_PRECISION) +/** @} */ // end of group MIXED_PRECISION_ACTIVATION_BLOCK + +/** Mixed-Precision-Aware Elementwise Op Block + * Performs OPERAND1 = OP(OPERAND1, OPERAND2) + * @name MIXED_PRECISION_ELTWISE_OP_BLOCK + * + * @param[in] OP The elementwise post op + * @param[in] M0 The number of consecutive rows + * @param[in] N0 The number of consecutive columns + * @param[in] OPERAND1 The basename of the first and result operand variables + * @param[in] OPERAND2 The basename of the second operand variables + * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op + * @param[in] CONVERTED_OPERAND2 The basename of the second operand variables converted to higher-precision in case of mixed-precision op + * @{ + */ +#if defined(MIXED_PRECISION) +#define MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \ + CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, OPERAND2, CONVERTED_OPERAND2); \ + ELTWISE_OP_BLOCK(OP, M0, OPERAND1, CONVERTED_OPERAND2); +#else // defined(MIXED_PRECISION) +#define MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \ + ELTWISE_OP_BLOCK(OP, M0, OPERAND1, OPERAND2); +#endif // defined(MIXED_PRECISION) +/** @} */ // end of group MIXED_PRECISION_ELTWISE_OP_BLOCK + +/** Mixed-Precision-Aware Elementwise Op Broadcast Block + * Performs OPERAND1 = OP(OPERAND1, OPERAND2) + * @name MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST + * @note Only support: + * case 1 broadcast in Y dimension : Operand1 [YxX] + Operand2 [1xX]; this means @p N0 > 1 + * case 2 broadcast in both Y and X dimensions : Operand1 [YxX] + Operand2 [1x1] (scalar) ; this means @p N0 == 1 + * Does NOT support broad cast in X dimension: Operand1 [YxX] + Operand2 [Yx1]; this means @p M0 should never == 1 + * + * @param[in] OP The elementwise post op + * @param[in] M0 The number of consecutive rows, > 1 + * @param[in] N0 The number of consecutive columns, >= 1 + * @param[in] OPERAND1 The basename of the first and result operand variables + * @param[in] OPERAND2 The basename of the second operand variables + * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op + * @param[in] CONVERTED_OPERAND2 The basename of the second operand variables converted to higher-precision in case of mixed-precision op + * @{ + */ +#if defined(MIXED_PRECISION) +#define MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \ + CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, OPERAND2, CONVERTED_OPERAND2); \ + ELTWISE_OP_BLOCK_BROADCAST(OP, M0, OPERAND1, CONVERTED_OPERAND2##0); +#else // defined(MIXED_PRECISION) +#define MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \ + ELTWISE_OP_BLOCK_BROADCAST(OP, M0, OPERAND1, OPERAND2##0); +#endif // defined(MIXED_PRECISION) +/** @} */ // end of group MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST + +/** Mixed-Precision-Aware Boundary-Aware Store Block + * @name MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE + * params M0 ... PARTIAL_COND_X, same as those in STORE_BLOCK_BOUNDARY_AWARE + * + * @param[in] BASENAME_LP The name of the low precision variables, converted from BASENAME, in case of mixed-precision op + * @{ + */ +#if defined(MIXED_PRECISION) +#define MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X, BASENAME_LP) \ + CONVERT_BLOCK(M0, N0, DATA_TYPE, BASENAME, BASENAME_LP); \ + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME_LP, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X); +#else // defined(MIXED_PRECISION) +#define MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X, BASENAME_LP) \ + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X); +#endif // defined(MIXED_PRECISION) +/** @} */ // end of group MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE \ No newline at end of file diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl index 431c97becc..dd03147ad6 100644 --- a/src/core/CL/cl_kernels/common/gemm.cl +++ b/src/core/CL/cl_kernels/common/gemm.cl @@ -2524,6 +2524,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), /** This OpenCL kernel computes the matrix multiplication between 2 matrices. * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed + * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl * * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float) * @note The data type used for the accumulators must be passed at compile time using -DDATA_TYPE_ACCUMULATOR (e.g. -DDATA_TYPE_ACCUMULATOR=float) @@ -2798,6 +2799,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs), /** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object. * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed + * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl * * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float) @@ -3179,6 +3181,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs), /** This OpenCL kernel computes the matrix multiplication between 2 matrices. * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed + * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl * * @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE). * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. @@ -3560,6 +3563,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs), /** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object. * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed + * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl * * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel * @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE). @@ -3929,7 +3933,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs), #endif // defined(LHS_TRANSPOSE) -#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE) +#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N) #if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE) -- cgit v1.2.1